Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673994

RESUMEN

Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-ß (TGF-ß), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/ß-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.


Asunto(s)
Alopecia Areata , Vitíligo , Alopecia Areata/inmunología , Alopecia Areata/patología , Alopecia Areata/etiología , Alopecia Areata/metabolismo , Humanos , Vitíligo/inmunología , Vitíligo/patología , Vitíligo/metabolismo , Vitíligo/etiología , Animales , Privilegio Inmunológico , Citocinas/metabolismo
2.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629154

RESUMEN

Our understanding of allergic contact dermatitis mechanisms has progressed over the past decade. Innate immune cells that are involved in the pathogenesis of allergic contact dermatitis include Langerhans cells, dermal dendritic cells, macrophages, mast cells, innate lymphoid cells (ILCs), neutrophils, eosinophils, and basophils. ILCs can be subcategorized as group 1 (natural killer cells; ILC1) in association with Th1, group 2 (ILC2) in association with Th2, and group 3 (lymphoid tissue-inducer cells; ILC3) in association with Th17. Pattern recognition receptors (PRRs) including toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) in innate immune cells recognize damage-associated molecular patterns (DAMPs) and cascade the signal to produce several cytokines and chemokines including tumor necrosis factor (TNF)-α, interferon (IFN)-α, IFN-γ, interleukin (IL)-1ß, IL-4, IL-6, IL-12, IL-13, IL-17, IL-18, and IL-23. Here we discuss the recent findings showing the roles of the innate immune system in allergic contact dermatitis during the sensitization and elicitation phases.


Asunto(s)
Dermatitis Alérgica por Contacto , Inmunidad Innata , Humanos , Linfocitos , Citocinas , Interferón-alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...