RESUMEN
Microplastics (MPs) and plastic additive chemicals are emerging pollutants of great concerns around the world. Open dumping sites can be important sources of those pollutants in emerging countries, but little is known about their occurrence, distribution, transport pathway, and remediation approach. This study aimed to obtain the comprehensive dataset on plastic pollution in an open dumping site in Thailand, including (1) the polymer types and organic/inorganic plastic additives in plastic garbage, (2) horizontal distribution of MPs and plastic additives in the surface soil, (3) the effects of soil-capping treatment, and (4) the vertical transport. First, thirty-two plastic garbage collected from the dumping site were analyzed, and a total of 40 organic chemicals (mean: 1400,000 ng/g dw) and 7 heavy metals (mean: 2,030,000 ng/g dw) were identified. The burdens stored in the dumping site were estimated to reach to 3.3-18 tons for organic additives and 4.9-26 tons for heavy metals. In the surface soil analysis, 13 types of polymers in MPs, 20 elements, and 37 organic plastic additives were detected. The pollution levels were significantly higher near the dumping site than at control sites, indicating that the open dumping site is a point source of MPs and plastic additives. Interestingly, a significantly positive correlation was found between the concentrations of MPs and organic additives in soil. This suggests that MPs act as carriers of plastic-derived chemicals. Soil-capping treatment (including removal of some trash) drastically mitigated the contaminant levels in the surface soil, indicating this treatment is one of the effective approaches to control the horizontal distribution of MPs and plastic additives. However, soil core analyzes implied that the vertical transport is still continued even after soil-capping treatment. Our findings provided the comprehensive dataset to support for understanding plastic pollution in the open dumping site.
Asunto(s)
Monitoreo del Ambiente , Microplásticos , Plásticos , Contaminantes del Suelo , Tailandia , Plásticos/análisis , Microplásticos/análisis , Contaminantes del Suelo/análisis , Suelo/química , Instalaciones de Eliminación de Residuos , Metales Pesados/análisisRESUMEN
Microplastics (MPs) are environmental pollutants of great concern around the world. The source of MPs in road dust need to be identified to develop strategies to control and reduce MPs emissions by stormwater runoff, one of the main sources of MPs to the aquatic environment. However, little information on the sources of MPs in road dust is available due to lack of their suitable indicators. In this study organic/inorganic plastic additives were used as chemical indicators to understand the source of MPs in road dust. The polymers, organic additives, and heavy metals in 142 commercial plastic products suspected of being source of MPs in road dust were determined. As the results, 147 organic additives and 17 heavy metals were identified, and different additive profiles were found for different polymer types and use application of plastic products. Further, 17 road dust samples were collected from an urban area in Kumamoto City, Japan. and analyzed the MPs (1-5 mm diameter) and their additive chemicals. Polymethyl methacrylate (PMMA) was the dominant polymer accounting for 86 % in the samples, followed by ethylene vinyl acetate (EVA) and polyvinyl chloride (PVC). In total, 48 organic additives and 14 heavy metals were identified in the MPs samples. The organic/inorganic additive profiles of plastic products and MPs in road dust were compared, and several road dust-associated MPs had similar additive profiles to road paints, braille blocks, road marking sheets, and reflectors. This suggested that the MPs were originated from these plastics on the road surface. Road paint was the most important contributor of MPs in road dust (60 % of the MPs), followed by braille block (23 %), road marking sheet (8.3 %), and reflector (2.4 %). These results indicated that organic/inorganic plastic additives in plastic products can be used as chemical indicators to trace the sources of MPs in road dust.