Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Nutrients ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39275136

RESUMEN

Corticosterone, an end product of the hypothalamic-pituitary-adrenal (HPA) axis, is a crucial stress hormone. A dysregulated HPA axis and corticosterone release play pivotal roles in the onset and persistence of symptoms of stress-related psychiatric disorders, such as anxiety. The intake of nutrients, probiotics, and prebiotic supplements decreases blood corticosterone levels. The dipeptide L-carnosine is composed of beta-alanine and L-histidine and is commercially available as a nutritional supplement for recovery from fatigue. L-carnosine is involved in stress-induced corticosterone responses and anxiety behaviors in rodents. Here, we assessed the effect of L-carnosine in CD157 knockout (KO) mice, a murine model of autism spectrum disorder (ASD). The uptake of L-carnosine suppressed the increase in plasma corticosterone levels in response to acute stress and attenuated anxiety-like behaviors in CD157 KO mice. These results suggest that L-carnosine supplementation may relieve anxiety by suppressing excessive stress responses in individuals with ASD.


Asunto(s)
Ansiedad , Carnosina , Corticosterona , Suplementos Dietéticos , Ratones Noqueados , Estrés Psicológico , Animales , Corticosterona/sangre , Carnosina/farmacología , Masculino , Ratones , Modelos Animales de Enfermedad , Trastorno del Espectro Autista , Conducta Animal/efectos de los fármacos , Administración Oral , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Ligadas a GPI/metabolismo
2.
Parasite Immunol ; 46(6): e13039, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838041

RESUMEN

Ticks are notorious blood-sucking ectoparasites that affect both humans and animals. They serve as a unique vector of various deadly diseases. Here, we have shown the roles of the receptor for advanced glycation end products (RAGE) during repeated infestations by the tick Haemaphysalis longicornis using RAGE-/- mice. In primary infestation, a large blood pool developed, which was flooded with numerous RBCs, especially during the rapid feeding phase of the tick both in wild-type (wt) and RAGE-/- mice. Very few inflammatory cells were detected around the zones of haemorrhage in the primary infestations. However, the number of inflammatory cells gradually increased in the subsequent tick infestations, and during the third infestations, the number of inflammatory cells reached to the highest level (350.3 ± 16.8 cells/focus). The site of attachment was totally occupied by the inflammatory cells in wt mice, whereas very few cells were detected at the ticks' biting sites in RAGE-/- mice. RAGE was highly expressed during the third infestation in wt mice. In the third infestation, infiltration of CD44+ lymphocytes, eosinophils and expression of S100A8 and S100B significantly increased at the biting sites of ticks in wt, but not in RAGE-/- mice. In addition, peripheral eosinophil counts significantly increased in wt but not in RAGE-/- mice. Taken together, our study revealed that RAGE-mediated inflammation and eosinophils played crucial roles in the tick-induced inflammatory reactions.


Asunto(s)
Inflamación , Ixodidae , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada , Infestaciones por Garrapatas , Animales , Ixodidae/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Ratones , Infestaciones por Garrapatas/inmunología , Ratones Endogámicos C57BL , Femenino , Conducta Alimentaria , Haemaphysalis longicornis
3.
Chembiochem ; 25(17): e202400197, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38940417

RESUMEN

Water-soluble phthalocyanine (Pc) derivatives have been regarded as potential G-quadruplex (G4) nucleic acid-targeting ligands for anticancer therapy and have been extensively studied as effective photosensitizers for photodynamic therapy (PDT). Understanding how photosensitizers interact with nucleic acids and the subsequent photolytic reactions is essential for deciphering the initial steps of PDT, thereby aiding in the development of new photosensitizing agents. In this study, we found that red-light irradiation of a mixture of a Zn(II) Pc derivative and an all-parallel G4 DNA leads to catalytic and selective photodegradation of the DNA by reactive oxygen species (ROS) generated from the Zn(II) Pc derivative bound to DNA through a reaction mechanism similar to that of an enzyme reaction. This finding provides a novel insight into the molecular design of a photosensitizer to enhance its PDT efficacy.


Asunto(s)
ADN , G-Cuádruplex , Indoles , Isoindoles , Luz , Fotólisis , Fármacos Fotosensibilizantes , G-Cuádruplex/efectos de los fármacos , Indoles/química , Indoles/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/efectos de la radiación , ADN/química , Fotólisis/efectos de la radiación , Catálisis , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Zinc/química , Zinc/farmacología , Compuestos de Zinc/química , Especies Reactivas de Oxígeno/metabolismo , Fotoquimioterapia , Luz Roja
4.
Peptides ; 178: 171230, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38677620

RESUMEN

Oxytocin (OT) is a neuropeptide that primarily functions as a hormone controlling female reproductive processes. Since numerous recent studies have shown that single and repetitive administrations of OT increase trust, social interaction, and maternal behaviors in humans and animals, OT is considered a key molecule that regulates social memory and behavior. Furthermore, OT binds to receptors for advanced glycation end-products (RAGE), and it has been demonstrated that loss of RAGE in the brain vascular endothelial cells of mice fails to increase brain OT concentrations following peripheral OT administration. This leads to the hypothesis that RAGE is involved in the direct transport of OT, allowing it access to the brain by transporting it across the blood-brain barrier; however, this hypothesis is only based on limited evidence. Herein, we review the recent results related to this hypothesis, such as the mode of transport of OT in the blood circulation to the brain via different forms of RAGE, including membrane-bound full-length RAGE and soluble RAGE. We further review the modulation of brain function and social behavior, which seem to be mediated by RAGE-dependent OT. Overall, this review mostly confirms that RAGE enables the recruitment of circulating OT to the brain, thereby influencing social behavior. The requirement for further studies considering the physiological aspects of RAGE is also discussed.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Oxitocina , Receptor para Productos Finales de Glicación Avanzada , Conducta Social , Oxitocina/metabolismo , Oxitocina/sangre , Barrera Hematoencefálica/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Humanos , Encéfalo/metabolismo , Ratones , Femenino
5.
J Gastroenterol Hepatol ; 39(7): 1413-1421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38348885

RESUMEN

BACKGROUND AND AIM: Safe radical hepatectomy is important for patients with colorectal liver metastases complicated by sinusoidal obstruction syndrome (SOS) after oxaliplatin-based chemotherapy. This study aimed to investigate the impact of preoperative administration of cilostazol (CZ), an oral selective phosphodiesterase III inhibitor, on hepatectomy in rat SOS model. MATERIAL AND METHODS: Rats were divided into NL (normal liver), SOS (monocrotaline [MCT]-treated), and SOS + CZ (MCT + CZ-treated) groups. MCT or CZ was administered orally, and a 30% partial hepatectomy was performed 48 h after MCT administration. Postoperative survival rates were evaluated (n = 9, for each). Other rats were sacrificed on postoperative days (POD) 1 and 3 and evaluated histologically, immunohistochemically, biochemically, and using transmission electron microscopy (TEM), focusing particularly on SOS findings, liver damage, and liver sinusoidal endothelial cell (LSEC) injury. RESULTS: The cumulative 10-day postoperative survival rate was significantly higher in the SOS + CZ group than in the SOS group (88.9% vs 33.3%, P = 0.001). Total SOS scores were significantly lower in the SOS + CZ group than in the SOS group on both POD 1 and 3. Serum biochemistry and immunohistochemistry showed that CZ reduced liver damage after hepatectomy. TEM revealed that LSECs were significantly preserved morphologically in the SOS + CZ group than in the SOS group on POD 1 (86.1 ± 8.2% vs 63.8 ± 9.3%, P = 0.003). CONCLUSION: Preoperative CZ administration reduced liver injury by protecting LSECs and improved the prognosis after hepatectomy in rats with SOS.


Asunto(s)
Cilostazol , Modelos Animales de Enfermedad , Hepatectomía , Enfermedad Veno-Oclusiva Hepática , Inhibidores de Fosfodiesterasa 3 , Animales , Enfermedad Veno-Oclusiva Hepática/prevención & control , Enfermedad Veno-Oclusiva Hepática/etiología , Enfermedad Veno-Oclusiva Hepática/patología , Cilostazol/farmacología , Hepatectomía/efectos adversos , Masculino , Inhibidores de Fosfodiesterasa 3/farmacología , Inhibidores de Fosfodiesterasa 3/uso terapéutico , Pronóstico , Oxaliplatino/efectos adversos , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/tratamiento farmacológico , Tasa de Supervivencia , Ratas , Tetrazoles/administración & dosificación , Tetrazoles/farmacología , Neoplasias Colorrectales/patología , Hígado/patología , Ratas Sprague-Dawley
6.
Am J Pathol ; 194(5): 693-707, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38309428

RESUMEN

Glucose lowering independently reduces liver fibrosis in human nonalcoholic fatty liver disease. This study investigated the impact of diabetes on steatohepatitis and established a novel mouse model for diabetic steatohepatitis. Male C57BL/6J mice were fed a 60% high-fat diet (HFD) and injected with carbon tetrachloride (CCl4) and streptozotocin (STZ) to induce diabetes. The HFD+CCl4+STZ group showed more severe liver steatosis, hepatocyte ballooning, and regenerative nodules compared with other groups. Diabetes up-regulated inflammatory cytokine-associated genes and increased the M1/M2 macrophage ratios in the liver. Single-cell RNA sequencing analysis of nonparenchymal cells in the liver showed that diabetes reduced Kupffer cells and increased bone marrow-derived recruited inflammatory macrophages, such as Ly6Chi-RM. Diabetes globally reduced liver sinusoidal endothelial cells (LSECs). Furthermore, genes related to the receptor for advanced glycation end products (RAGE)/Toll-like receptor 4 (TLR4) were up-regulated in Ly6Chi-RM and LSECs in mice with diabetes, suggesting a possible role of RAGE/TLR4 signaling in the interaction between inflammatory macrophages and LSECs. This study established a novel diabetic steatohepatitis model using a combination of HFD, CCl4, and STZ. Diabetes exacerbated steatosis, hepatocyte ballooning, fibrosis, regenerative nodule formation, and the macrophage M1/M2 ratios triggered by HFD and CCl4. Single-cell RNA sequencing analysis indicated that diabetes activated inflammatory macrophages and impairs LSECs through the RAGE/TLR4 signaling pathway. These findings open avenues for discovering novel therapeutic targets for diabetic steatohepatitis.


Asunto(s)
Diabetes Mellitus , Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Humanos , Animales , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Células Endoteliales/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/patología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Dieta Alta en Grasa/efectos adversos
7.
ChemSusChem ; 17(1): e202301244, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37681481

RESUMEN

Molecular hydrogen (H2 ) is a clean and renewable fuel that has garnered significant interest in the search for alternatives to fossil fuels. Here, we constructed an artificial DNAzyme composed of cobalt-protoporphyrin IX (CoPP) and G-quadruplex DNA, possessing a unique H2 Oint ligand between the CoPP and G-quartet planes. We show for the first time that CoPP-DNAzyme catalyzes photo-induced H2 production under anaerobic conditions with a turnover number (TON) of 1229 ± 51 over 12 h at pH 6.05 and 10 °C. Compared with free-CoPP, complexation with G-quadruplex DNA resulted in a 4.7-fold increase in H2 production activity. The TON of the CoPP-DNAzyme revealed an optimal acid-base equilibrium with a pKa value of 7.60 ± 0.05, apparently originating from the equilibrium between Co(III)-H- and Co(I) states. Our results demonstrate that the H2 Oint ligand can augment and modulate the intrinsic catalytic activity of H2 production catalysts. These systems pave the way to using DNAzymes for H2 evolution in the direct conversion of solar energy to H2 from water.


Asunto(s)
ADN Catalítico , G-Cuádruplex , ADN Catalítico/metabolismo , Hidrógeno , Ligandos , ADN , Cobalto
8.
Brain Behav Immun ; 116: 329-348, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142917

RESUMEN

BACKGROUND: Latent chronic inflammation has been proposed as a key mediator of multiple derangements in metabolic syndrome (MetS), which are increasingly becoming recognized as risk factors for age-related cognitive decline. However, the question remains whether latent chronic inflammation indeed induces brain inflammation and cognitive decline. METHODS: A mouse model of latent chronic inflammation was constructed by a chronic subcutaneous infusion of low dose lipopolysaccharide (LPS) for four weeks. A receptor for advanced glycation end products (RAGE) knockout mouse, a chimeric myeloid cell specific RAGE-deficient mouse established by bone marrow transplantation and a human endogenous secretory RAGE (esRAGE) overexpressing adenovirus system were utilized to examine the role of RAGE in vivo. The cognitive function was examined by a Y-maze test, and the expression level of genes was determined by quantitative RT-PCR, western blot, immunohistochemical staining, or ELISA assays. RESULTS: Latent chronic inflammation induced MetS features in C57BL/6J mice, which were associated with cognitive decline and brain inflammation characterized by microgliosis, monocyte infiltration and endothelial inflammation, without significant changes in circulating cytokines including TNF-α and IL-1ß. These changes as well as cognitive impairment were rescued in RAGE knockout mice or chimeric mice lacking RAGE in bone marrow cells. P-selectin glycoprotein ligand-1 (PSGL-1), a critical adhesion molecule, was induced in circulating mononuclear cells in latent chronic inflammation in wild-type but not RAGE knockout mice. These inflammatory changes and cognitive decline induced in the wild-type mice were ameliorated by an adenoviral increase in circulating esRAGE. Meanwhile, chimeric RAGE knockout mice possessing RAGE in myeloid cells were still resistant to cognitive decline and brain inflammation. CONCLUSIONS: These findings indicate that RAGE in inflammatory cells is necessary to mediate stimuli of latent chronic inflammation that cause brain inflammation and cognitive decline, potentially by orchestrating monocyte activation via regulation of PSGL-1 expression. Our results also suggest esRAGE-mediated inflammatory regulation as a potential therapeutic option for cognitive dysfunction in MetS with latent chronic inflammation.


Asunto(s)
Disfunción Cognitiva , Encefalitis , Síndrome Metabólico , Animales , Humanos , Ratones , Inflamación , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada
9.
Sci Rep ; 13(1): 22540, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110482

RESUMEN

Podocyte expression of fibroblast specific protein 1 (FSP1) is observed in various types of human glomerulonephritis. Considering that FSP1 is secreted extracellularly and has been shown to have multiple biological effects on distant cells, we postulated that secreted FSP1 from podocytes might impact renal tubules. Our RNA microarray analysis in a tubular epithelial cell line (mProx) revealed that FSP1 induced the expression of heme oxygenase 1, sequestosome 1, solute carrier family 7, member 11, and cystathionine gamma-lyase, all of which are associated with nuclear factor erythroid 2-related factor (Nrf2) activation. Therefore, FSP1 is likely to exert cytoprotective effects through Nrf2-induced antioxidant activity. Moreover, in mProx, FSP1 facilitated Nrf2 translocation to the nucleus, increased levels of reduced glutathione, inhibited the production of reactive oxygen species (ROS), and reduced cisplatin-induced cell death. FSP1 also ameliorated acute tubular injury in mice with cisplatin nephrotoxicity, which is a representative model of ROS-mediated tissue injury. Similarly, in transgenic mice that express FSP1 specifically in podocytes, tubular injury associated with cisplatin nephrotoxicity was also mitigated. Extracellular FSP1 secreted from podocytes acts on downstream tubular cells, exerting renoprotective effects through Nrf2-mediated antioxidant activity. Consequently, podocytes and tubular epithelial cells have a remote communication network to limit injury.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Humanos , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína de Unión al Calcio S100A4/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Cisplatino/farmacología , Cisplatino/metabolismo , Estrés Oxidativo , Hemo-Oxigenasa 1/metabolismo
10.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003518

RESUMEN

Sinusoidal obstruction syndrome (SOS) is a serious liver disorder that occurs after liver transplantation, hematopoietic stem cell transplantation, and the administration of anticancer drugs. Since SOS is a life-threatening condition that can progress to liver failure, early detection and prompt treatment are required for the survival of patients with this condition. In this study, female CD1 mice were divided into treatment and control groups after the induction of an SOS model using monocrotaline (MCT, 270 mg/kg body weight intraperitoneally). The mice were analyzed at 0, 12, 24, and 48 h after MCT administration, and blood and liver samples were collected for assays and histopathology tests. SOS was observed in the livers 12 h after MCT injection. In addition, immunohistochemical findings demonstrated CD42b-positive platelet aggregations, positive signals for von Willebrand factor (VWF), and a disintegrin-like metalloproteinase with thrombospondin type 1 motifs 13 (ADAMTS13) in the MCT-exposed liver sinusoid. Although ADAMTS13's plasma concentrations peaked at 12 h, its enzyme activity continuously decreased by 75% at 48 h and, inversely and proportionally, concentrations in the VWF-A2 domain, in which the cleavage site of ADAMTS13 is located, increased after MCT injection. These findings suggest that the plasma concentration and activity of ADAMTS13 could be useful biomarkers for early detection and therapeutic intervention in patients with SOS.


Asunto(s)
Enfermedad Veno-Oclusiva Hepática , Trasplante de Hígado , Humanos , Ratones , Femenino , Animales , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Enfermedad Veno-Oclusiva Hepática/diagnóstico , Factor de von Willebrand/metabolismo , Pronóstico , Trasplante de Hígado/efectos adversos , Proteína ADAMTS13
11.
Artículo en Inglés | MEDLINE | ID: mdl-37851159

RESUMEN

Objective structured clinical examination (OSCE) is widely used to assess medical students' clinical skills. Virtual OSCEs were used in place of in-person OSCEs during the COVID-19 pandemic; however, their reliability is yet to be robustly analyzed. By applying generalizability (G) theory, this study aimed to evaluate the reliability of a hybrid OSCE, which admixed in-person and online methods, and gain insights into improving OSCEs' reliability. During the 2020-2021 hybrid OSCEs, one examinee, one rater, and a vinyl mannequin for physical examination participated onsite, and a standardized simulated patient (SP) for medical interviewing and another rater joined online in one virtual breakout room on an audiovisual conferencing system. G-coefficients and 95% confidence intervals of the borderline score, namely border zone (BZ), under the standard 6-station, 2-rater, and 6-item setting were calculated. G-coefficients of in-person (2017-2019) and hybrid OSCEs (2020-2021) under the standard setting were estimated to be 0.624, 0.770, 0.782, 0.759, and 0.823, respectively. The BZ scores were estimated to be 2.43-3.57, 2.55-3.45, 2.59-3.41, 2.59-3.41, and 2.51-3.49, respectively, in the score range from 1 to 6. Although hybrid OSCEs showed reliability comparable to in-person OSCEs, they need further improvement as a very high-stakes examination. In addition to increasing clinical vignettes, having more proficient online/on-demand raters and/or online SPs for medical interviews could improve the reliability of OSCEs. Reliability can also be ensured through supplementary examination and by increasing the number of online raters for a small number of students within the BZs.

12.
Endocrinology ; 164(9)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548257

RESUMEN

In this review, we provide the status of research on vasoactive intestinal peptide (VIP) and oxytocin, typical C-terminal α-amidated peptide hormones, including their precursor protein structures, processing and C-terminal α-amidation, and the recently identified mechanisms of regulation of oxytocin secretion and its transportation through the blood brain barrier. More than half of neural and endocrine peptides, such as VIP and oxytocin, have the α-amide structure at their C-terminus, which is essential for biological activities. We have studied the synthesis and function of C-terminal α-amidated peptides, including VIP and oxytocin, since the 1980s. Human VIP mRNA encoded not only VIP but also another related C-terminal α-amidated peptide, PHM-27 (peptide having amino-terminal histidine, carboxy-terminal methionine amide, and 27 amino acid residues). The human VIP/PHM-27 gene is composed of 7 exons and regulated synergistically by cyclic AMP and protein kinase C pathways. VIP has an essential role in glycemic control using transgenic mouse technology. The peptide C-terminal α-amidation proceeded through a 2-step mechanism catalyzed by 2 different enzymes encoded in a single mRNA. In the oxytocin secretion from the hypothalamus/the posterior pituitary, the CD38-cyclic ADP-ribose signal system, which was first established in the insulin secretion from pancreatic ß cells of the islets of Langerhans, was found to be essential. A possible mechanism involving RAGE (receptor for advanced glycation end-products) of the oxytocin transportation from the blood stream into the brain through the blood-brain barrier has also been suggested.


Asunto(s)
Oxitocina , Péptido Intestinal Vasoactivo , Ratones , Humanos , Animales , Péptido Intestinal Vasoactivo/genética , Péptido PHI/genética , Receptor para Productos Finales de Glicación Avanzada , Amidas , Ratones Transgénicos
13.
Cells ; 12(13)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37443823

RESUMEN

Inflammation has been associated with depression, and innate immune receptors, such as the Toll-like receptor (TLR) 2/4 in the medial prefrontal cortex (mPFC), are crucial for chronic stress-induced depression-related behaviors in mice. HMGB1, a putative ligand for TLR2/4, has been suggested to promote depression-related behaviors under acute stress. However, the roles of endogenous HMGB1 under chronic stress remain to be investigated. Here, we found that the cerebroventricular infusion of HMGB1 proteins blocked stress-induced social avoidance and that HMGB1-neutralizing antibodies augmented repeated social defeat stress-induced social avoidance in mice, suggesting the antidepressive-like effect of HMGB1 in the brain. By contrast, the infusion of HMGB1-neutralizing antibodies to the mPFC and HMGB1 knockout in α-CaMKII-positive forebrain neurons attenuated the social avoidance, suggesting the pro-depressive-like effect of HMGB1 released from prefrontal neurons under chronic stress. In addition, repeated social defeat stress induced HMGB1 nuclear export selectively in mPFC neurons, which was abolished in the mice lacking RAGE, one of HMGB1 receptors, suggesting the positive feedback loop of HMGB1-RAGE signaling under chronic stress. These findings pave the way for identifying multiple roles of HMGB1 in the brain for chronic stress and depression.


Asunto(s)
Proteína HMGB1 , Derrota Social , Animales , Ratones , Transporte Activo de Núcleo Celular , Conducta Social , Neuronas
14.
EMBO J ; 42(15): e111247, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37357972

RESUMEN

Social behavior is essential for health, survival, and reproduction of animals; however, the role of astrocytes in social behavior remains largely unknown. The transmembrane protein CD38, which acts both as a receptor and ADP-ribosyl cyclase to produce cyclic ADP-ribose (cADPR) regulates social behaviors by promoting oxytocin release from hypothalamic neurons. CD38 is also abundantly expressed in astrocytes in the postnatal brain and is important for astroglial development. Here, we demonstrate that the astroglial-expressed CD38 plays an important role in social behavior during development. Selective deletion of CD38 in postnatal astrocytes, but not in adult astrocytes, impairs social memory without any other behavioral abnormalities. Morphological analysis shows that depletion of astroglial CD38 in the postnatal brain interferes with synapse formation in the medial prefrontal cortex (mPFC) and hippocampus. Moreover, astroglial CD38 expression promotes synaptogenesis of excitatory neurons by increasing the level of extracellular SPARCL1 (also known as Hevin), a synaptogenic protein. The release of SPARCL1 from astrocytes is regulated by CD38/cADPR/calcium signaling. These data demonstrate a novel developmental role of astrocytes in neural circuit formation and regulation of social behavior in adults.


Asunto(s)
Antígenos CD , ADP-Ribosa Cíclica , Animales , ADP-Ribosil Ciclasa 1/genética , Antígenos CD/metabolismo , ADP-Ribosa Cíclica/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Astrocitos/metabolismo , Sinapsis/metabolismo
15.
J Phys Chem B ; 127(20): 4514-4522, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37165653

RESUMEN

Pyropheophorbide a (Pyro-a), a chlorophyll metabolite, is a potential photosensitizer for photodynamic therapy (PDT), but little is known about its interaction with the target molecules for PDT, e.g., nucleic acids. Elucidation of the interaction between photosensitizers and nucleic acids will help us understand the initial process of PDT at the molecular level and hence to develop photosensitizing agents. We found that pyro-a forms a 1:1 complex with an all parallel-stranded G-quadruplex DNA and that pyro-a in the complex exhibits a quantum yield for singlet oxygen generation, with excitation at 664 nm, higher by a factor of ∼10 than that of pyro-a in an aqueous solution. These findings provided novel insights into molecular design of pyro-a-based photosensitizers to enhance their PDT efficacy.


Asunto(s)
G-Cuádruplex , Ácidos Nucleicos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Oxígeno Singlete , Clorofila , ADN
16.
J Fluoresc ; 33(6): 2431-2439, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37093333

RESUMEN

Water-soluble cationic gallium(III)-Pc complex (GaPc) is capable of photogenerating ROSs but does not exhibit photocytotoxicity in vivo. GaPc binds selectively, through a π-π stacking interaction, to the 5'-terminal G-quartet of a G-quadruplex DNA. The photo-excited state of GaPc of the complex is effectively quenched through electron transfer (ET) from the ground state of DNA guanine (G) bases to the photo-excited state of GaPc (ET(G-GaPc)). Hence the loss of the photocytotoxicity of GaPc in vivo is most likely to be due to the effective quenching of its photo-excited state through ET(G-GaPc). In this study, we investigated the photochemical properties of GaPc in the presence of duplex DNAs formed from a series of sequences to elucidate the nature of ET(G-GaPc). We found that ET(G-GaPc) is allowed in electrostatic complexes between GaPc and G-containing duplex DNAs and that the rate of ET(G-GaPc) (kET(G-GaPc)) can be reasonably interpreted in terms of the distance between Pc moiety of GaPc and DNA G base in the complex. We also found that the quantum yields of singlet oxygen (1O2) generation (ΦΔs) determined for the GaPc-duplex DNA complexes were similar to the value reported for free GaPc (Fujishiro R, Sonoyama H, Ide Y, et al (2019) J Inorg Biochem 192:7-16), indicating that ET(G-GaPc) in the complex is rather limited. These results clearly demonstrated that photocytotoxicity of GaPc is crucially affected by ET(G-GaPc). Thus elucidation of interaction of a photosensitizer with biomolecules, i.e., an initial process in PDT, would be helpful to understand its subsequent photochemical processes.


Asunto(s)
ADN , Electrones , Transporte de Electrón , ADN/química , Isoindoles
17.
Clin Immunol ; 250: 109317, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37015317

RESUMEN

The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor that regulates inflammation, cell migration, and cell fate. Systemic lupus erythematosus (SLE) is a chronic multiorgan autoimmune disease. To understand the function of RAGE in SLE, we generated RAGE-deficient (Ager-/-) lupus-prone mice by backcrossing MRL/MpJ-Faslpr/J (MRL-lpr) mice with Ager-/- C57BL/6 mice. In 18-week-old Ager-/- MRL-lpr, the weights of the spleen and lymph nodes, as well as the frequency of CD3+CD4-CD8- cells, were significantly decreased. Ager-/- MRL-lpr mice had significantly reduced urine albumin/creatinine ratios and markedly improved renal pathological scores. Moreover, neutrophil infiltration and neutrophil extracellular trap formation in the glomerulus were significantly reduced in Ager-/- MRL-lpr. Our study is the first to reveal that RAGE can have a pathologic role in immune cells, particularly neutrophils and T cells, in inflammatory tissues and suggests that the inhibition of RAGE may be a potential therapeutic strategy for SLE.


Asunto(s)
Trampas Extracelulares , Lupus Eritematoso Sistémico , Nefritis Lúpica , Ratones , Animales , Receptor para Productos Finales de Glicación Avanzada/genética , Reacción de Maillard , Ratones Endogámicos MRL lpr , Ratones Endogámicos C57BL
18.
Cancer Med ; 12(9): 10816-10828, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951594

RESUMEN

BACKGROUND: Since the human papillomavirus vaccines do not eliminate preexisting infections, nonsurgical alternative approaches to cervical intraepithelial neoplasia (CIN) have been required. We previously reported that FOXP4 (forkhead box transcription factor P4) promoted proliferation and inhibited squamous differentiation of CIN1-derived W12 cells. Since it was reported that FOXP expressions were regulated by the androgen/androgen receptor (AR) complex and AR was expressed on the CIN lesions, in this study we examined the effects of androgen on CIN progression. METHODS: Since AR expression was negative in W12 cells and HaCaT cells, a human male skin-derived keratinocyte cell line, we transfected AR to these cell lines and investigated the effects of dihydrotestosterone (DHT) on their proliferation and squamous differentiation. We also examined the immunohistochemical expression of AR in CIN lesions. RESULTS: DHT reduced the intranuclear expression of FOXP4, attenuating cell proliferation and promoting squamous differentiation in AR-transfected W12 cells. Si-RNA treatments showed that DHT induced the expression of squamous differentiation-related genes in AR-transfected W12 cells via an ELF3-dependent pathway. DHT also reduced FOXP4 expression in AR-transfected HaCaT cells. An immunohistochemical study showed that AR was expressed in the basal to parabasal layers of the normal cervical epithelium. In CIN1 and 2 lesions, AR was detected in atypical squamous cells, whereas AR expression had almost disappeared in the CIN3 lesion and was not detected in SCC, suggesting that androgens do not act to promote squamous differentiation in the late stages of CIN. CONCLUSION: Androgen is a novel factor that regulates squamous differentiation in the early stage of CIN, providing a new strategy for nonsurgical and hormone-induced differentiation therapy against CIN1 and CIN2.


Asunto(s)
Carcinoma de Células Escamosas , Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Andrógenos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN , Factores de Transcripción Forkhead , Infecciones por Papillomavirus/complicaciones , Proteínas Proto-Oncogénicas c-ets , Factores de Transcripción , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo
20.
Nat Commun ; 14(1): 167, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690638

RESUMEN

Hepatocellular death increases with hepatic steatosis aggravation, although its regulation remains unclear. Here we show that hepatic steatosis aggravation shifts the hepatocellular death mode from apoptosis to necroptosis, causing increased hepatocellular death. Our results reveal that the transcription factor ATF3 acts as a master regulator in this shift by inducing expression of RIPK3, a regulator of necroptosis. In severe hepatic steatosis, after partial hepatectomy, hepatic ATF3-deficient or -overexpressing mice display decreased or increased RIPK3 expression and necroptosis, respectively. In cultured hepatocytes, ATF3 changes TNFα-dependent cell death mode from apoptosis to necroptosis, as revealed by live-cell imaging. In non-alcoholic steatohepatitis (NASH) mice, hepatic ATF3 deficiency suppresses RIPK3 expression and hepatocellular death. In human NASH, hepatocellular damage is correlated with the frequency of hepatocytes expressing ATF3 or RIPK3, which overlap frequently. ATF3-dependent RIPK3 induction, causing a modal shift of hepatocellular death, can be a therapeutic target for steatosis-induced liver damage, including NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factores de Transcripción/metabolismo , Necroptosis , Apoptosis , Hepatocitos/metabolismo , Muerte Celular , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Transcripción Activador 3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...