Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; : e202400932, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949892

RESUMEN

Carbohydrate derivatives play a crucial role in biochemical and medicinal research. Therefore, the present study was designed to explore the synthesis of methyl α-D-glucopyranoside derivatives (1, MDG), focusing on their efficacy against bacterial and fungal infections. The structure of the synthesized compounds was ascertained using spectral and elemental analyses. Antimicrobial screening revealed strong antifungal properties and exhibited MIC values of 16-32 µg/L and MBC 64-128 µg/L. Structure-activity relationship (SAR) analysis indicated that adding nonanoyl and decanoyl groups to ribose moiety enhanced potency against both bacterial and fungal strains. Compounds 6 and 7, presented nonanoyl and decanoyl substituents and demonstrated greater efficacy. In addition, DFT studies identified compound 8 as possessing ideal electronic properties. Molecular docking revealed that compound 8 exhibits exceptional binding affinities to bacterial proteins, conferring potent antibacterial and antifungal activities. In addition, pharmacokinetic optimization via POM analysis highlighted compounds 1 and 2 as promising bioavailable drugs with minimal toxicity. Molecular dynamics simulations confirmed the stability of the 2-S. aureus complex, revealing the therapeutic potential of compounds 2 and 8. The integration of in vitro and in silico methods, including DFT anchoring dynamics and molecular dynamics simulations, provides a solid framework for the advancement of effective anti-infective drugs.

2.
Molecules ; 29(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38398573

RESUMEN

A set of 5-(substituted benzylidene) thiazolidine-2,4-dione derivatives was explored to study the main structural requirement for the design of protein tyrosine phosphatase 1B (PTP1B) inhibitors. Utilizing multiple linear regression (MLR) analysis, we constructed a robust quantitative structure-activity relationship (QSAR) model to predict inhibitory activity, resulting in a noteworthy correlation coefficient (R2) of 0.942. Rigorous cross-validation using the leave-one-out (LOO) technique and statistical parameter calculations affirmed the model's reliability, with the QSAR analysis revealing 10 distinct structural patterns influencing PTP1B inhibitory activity. Compound 7e(ref) emerged as the optimal scaffold for drug design. Seven new PTP1B inhibitors were designed based on the QSAR model, followed by molecular docking studies to predict interactions and identify structural features. Pharmacokinetics properties were assessed through drug-likeness and ADMET studies. After that density functional theory (DFT) was conducted to assess the stability and reactivity of potential diabetes mellitus drug candidates. The subsequent dynamic simulation phase provided additional insights into stability and interactions dynamics of the top-ranked compound 11c. This comprehensive approach enhances our understanding of potential drug candidates for treating diabetes mellitus.


Asunto(s)
Diabetes Mellitus , Relación Estructura-Actividad Cuantitativa , Humanos , Simulación del Acoplamiento Molecular , Tiazolidinas/farmacología , Tiazolidinas/química , Reproducibilidad de los Resultados , Simulación de Dinámica Molecular , Inhibidores Enzimáticos/química , Diabetes Mellitus/tratamiento farmacológico
3.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399476

RESUMEN

In response to the increasing prevalence of diabetes mellitus and the limitations associated with the current treatments, there is a growing need to develop novel medications for this disease. This study is focused on creating new compounds that exhibit a strong inhibition of alpha-glucosidase, which is a pivotal enzyme in diabetes control. A set of 33 triazole derivatives underwent an extensive QSAR analysis, aiming to identify the key factors influencing their inhibitory activity against α-glucosidase. Using the multiple linear regression (MLR) model, seven promising compounds were designed as potential drugs. Molecular docking and dynamics simulations were employed to shed light on the mode of interaction between the ligands and the target, and the stability of the obtained complexes. Furthermore, the pharmacokinetic properties of the designed compounds were assessed to predict their behavior in the human body. The binding free energy was also calculated using MMGBSA method and revealed favorable thermodynamic properties. The results highlighted three novel compounds with high biological activity, strong binding affinity to the target enzyme, and suitability for oral administration. These results offer interesting prospects for the development of effective and well-tolerated medications against diabetes mellitus.

4.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305802

RESUMEN

The rising prevalence of diabetes necessitates the development of novel drugs, especially given the side effects associated with current medications like Acarbose and Voglibose. A series of 36 Hydrazinyl thiazole-linked indenoquinoxaline derivatives with notable activity against alpha-amylase were studied. To create a molecular model predicting alpha-amylase activity, a QSAR study was performed on these compounds. Molecular descriptors were calculated using Chem3D and Gaussian software and then correlated with their IC50 biological activities to form a dataset. This model data was refined using PCA and modeled with MLR. The model's performance was statistically verified (R2 =0.800; Radj2 = 0.767; Rcv2 = 0.651) and its applicability domain was defined. It was predicted to possess high predictive power (Rtest2  = 0.872). Based on this, new compounds were proposed, and their activities were predicted using the developed model. Additionally, their binding ability to the biological target was studied through molecular docking and dynamics. Their pharmacokinetics were also evaluated using ADMET predictions. Two designed compounds named AE and AB emerged as particularly promising, displaying properties that suggest substantial therapeutic potential and they can form stable complexes into the binding pocket of alpha-amylase enzyme.Communicated by Ramaswamy H. Sarma.

5.
Plant Physiol Biochem ; 207: 108361, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237423

RESUMEN

Like other heavy metals, Cr (VI) is a powerful carcinogen and mutagen agent. Its toxic effects on plants are well considered. In order to elucidate its adverse effects, the present work aims to study the mitosis aberrations of Cr (VI) on the Vicia faba root-cells and its molecular docking analysis to understand the genotoxicity mechanisms. In-vivo, Vicia faba plants were exposed to 50 and 100 µM Cr (VI) for 48 h. In-silico, molecular docking and molecular dynamics simulation were used to study the interactions between dichromate and tubulin tyrosine ligase T2R-TTL (PDBID: 5XIW) with reference to Colchicine (microtubule inhibitor). According to our results, Cr (VI) affects growth and cell division and also induces many mitosis aberrations such as chromosome sticking, anaphase/telophase bridges, lagging chromosomes and fragmentation during all phases of mitosis. On the one hand, Cr (VI) reduces mitotic index and promotes micronuclei induction. The in-silico results showed that dichromate establishes very strong bonds at the binding site of the tubulin tyrosine ligase T2R-TTL, with a binding affinity of -5.17 Kcal/Mol and an inhibition constant of 163.59 µM. These interactions are similar to those of colchicine with this protein, so dichromate could be a very potent inhibitor of this protein's activity. TTL plays a fundamental role in the tyrosination/detyrosination of tubulin, which is crucial to the regulation of the microtubule cytoskeleton. Its inhibition leads to the appearance of many morphogenic abnormalities such as mitosis aberrations. In conclusion, our data confirm the highest genotoxicity effects of Cr (VI) on Vicia faba root-cells.


Asunto(s)
Fabaceae , Vicia faba , Vicia faba/genética , Simulación del Acoplamiento Molecular , Tubulina (Proteína)/genética , Tubulina (Proteína)/farmacología , Cromo/toxicidad , Mitosis , Daño del ADN , Colchicina/farmacología , Tirosina , Ligasas , Aberraciones Cromosómicas
6.
Comput Biol Chem ; 108: 107993, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38071761

RESUMEN

A series of new isoxazolederivatives incorporating the sulfonate ester function has been synthesized from 2-benzylidenebenzofuran-3(2 H)-one, known as aurone. The synthesis of the target compounds was carried out following an efficient methodology that allows access to the desired products in a reproducible way and with good yield. The structures of the synthesized compounds were established using NMR (1H and 13C) spectroscopy and mass spectrometry. A theoretical study was performed to optimize the geometrical structures and to calculate the structural and electronic parameters of the synthesized compounds. The calculations were also carried out to understand the influence and the effect of substitutions on the chemical reactivity of the studied compounds. The synthesized isoxazoles were screened for their antioxidant and antibacterial activities. The findings demonstrate that the studied compounds exhibit good to moderate antibacterial activity against the tested bacteria (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli). Moreover, a number of the tested isoxazole derivatives exhibit high effectiveness against DPPH free radicals. Besides that, molecular docking studies were carried out to predict binding affinity and identify the most likely binding interactions between the active molecules and the target microorganisms' proteins. A 100 ns molecular dynamics study was then conducted to examine the dynamic behavior and stability of the highly potent isoxazole 4e in complex with the target bacterial proteins. Finally, the ADMET analyses suggest that all the synthesized isoxazoles have good pharmacokinetic profiles and non-toxicity and non-carcinogenicity in biological systems.


Asunto(s)
Antioxidantes , Isoxazoles , Antioxidantes/química , Simulación del Acoplamiento Molecular , Isoxazoles/química , Antibacterianos/química , Bacterias , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
7.
Nat Prod Res ; : 1-8, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966948

RESUMEN

The lack of treatments and vaccines effective against SARS-CoV-2 has forced us to explore natural compounds that could potentially inhibit this virus. Additionally, Morocco is renowned for its rich plant diversity and traditional medicinal uses, which inspires us to leverage our cultural heritage and the abundance of natural resources in our country for therapeutic purposes. In this study, an extensive investigation was conducted to gather a collection of phytoconstituents extracted from Moroccan plants, aiming to evaluate their ability to inhibit the proliferation of the SARS-CoV-2 virus. Molecular docking of the studied compounds was performed at the active sites of the main protease (6lu7) and spike (6m0j) proteins to assess their binding affinity to these target proteins. Compounds exhibiting high affinity to the proteins underwent further evaluation based on Lipinski's rule and ADME-Tox analysis to gain insights into their oral bioavailability and safety. The results revealed that the two compounds demonstrated strong binding affinity to the target proteins, making them potential candidates for oral antiviral drugs against SARS-CoV-2. The molecular dynamics results from this computational analysis supported the overall stability of the resulting complex.

8.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817499

RESUMEN

A mechanistic study was performed within the molecular electron density theory at the B3LYP/6-311G (d,p) computational level to explain the regioselectivity observed. An electron localization function analysis was also performed, and the results confirm the zwitterionic-type (zw-type) mechanism of the cycloaddition reactions between nitrile oxide and alkylated 4H-chromene-2-carboxylate derivatives and shed more light on the obtained regioselectivity experimentally. In silico studies on the pharmacokinetics, ADME and toxicity tests of the compounds were also performed, and it was projected that compounds 5a, 5b, 5c and 5d are pharmacokinetic and have favorable ADME profiles. Moreover, docking and molecular dynamics investigations were conducted to evaluate the interactions, orientation and conformation of the target compounds on the active sites of four distinct enzymes. The results of this investigation showed that two compounds, 5a and 5c, interacted effectively with the S. aureus active site while maintaining acceptable binding energy.Communicated by Ramaswamy H. Sarma.

9.
Sci Afr ; 21: e01754, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37332393

RESUMEN

Originating in Wuhan, the COVID-19 pandemic wave has had a profound impact on the global healthcare system. In this study, we used a 2D QSAR technique, ADMET analysis, molecular docking, and dynamic simulations to sort and evaluate the performance of thirty-nine bioactive analogues of 9,10-dihydrophenanthrene. The primary goal of the study is to use computational approaches to create a greater variety of structural references for the creation of more potent SARS-CoV-2 3Clpro inhibitors. This strategy is to speed up the process of finding active chemicals. Molecular descriptors were calculated using 'PaDEL' and 'ChemDes' software, and then redundant and non-significant descriptors were eliminated by a module in 'QSARINS ver. 2.2.2'. Subsequently, two statistically robust QSAR models were developed by applying multiple linear regression (MLR) methods. The correlation coefficients obtained by the two models are 0.89 and 0.82, respectively. These models were then subjected to internal and external validation tests, Y-randomization, and applicability domain analysis. The best model developed is applied to designate new molecules with good inhibitory activity values against severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). We also examined various pharmacokinetic properties using ADMET analysis. Then, through molecular docking simulations, we used the crystal structure of the main protease of SARS-CoV-2 (3CLpro/Mpro) in a complex with the covalent inhibitor "Narlaprevir" (PDB ID: 7JYC). We also supported our molecular docking predictions with an extended molecular dynamics simulation of a docked ligand-protein complex. We hope that the results obtained in this study can be used as good anti-SARS-CoV-2 inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...