Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 16(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37139703

RESUMEN

Hypokalemic periodic paralysis (HypoPP) is a rare genetic disease associated with mutations in CACNA1S or SCN4A encoding the voltage-gated Ca2+ channel Cav1.1 or the voltage-gated Na+ channel Nav1.4, respectively. Most HypoPP-associated missense changes occur at the arginine residues within the voltage-sensing domain (VSD) of these channels. It is established that such mutations destroy the hydrophobic seal that separates external fluid and the internal cytosolic crevices, resulting in the generation of aberrant leak currents called gating pore currents. Presently, the gating pore currents are thought to underlie HypoPP. Here, based on HEK293T cells and by using the Sleeping Beauty transposon system, we generated HypoPP-model cell lines that co-express the mouse inward-rectifier K+ channel (mKir2.1) and HypoPP2-associated Nav1.4 channel. Whole-cell patch-clamp measurements confirmed that mKir2.1 successfully hyperpolarizes the membrane potential to levels comparable to those of myofibers, and that some Nav1.4 variants induce notable proton-based gating pore currents. Importantly, we succeeded in fluorometrically measuring the gating pore currents in these variants by using a ratiometric pH indicator. Our optical method provides a potential in vitro platform for high-throughput drug screening, not only for HypoPP but also for other channelopathies caused by VSD mutations.


Asunto(s)
Parálisis Periódica Hipopotasémica , Ratones , Humanos , Animales , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Células HEK293 , Mutación/genética , Activación del Canal Iónico , Citosol/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo
2.
Muscle Nerve ; 67(5): 387-393, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36762492

RESUMEN

INTRODUCTION/AIMS: Myotonic dystrophy (DM) is a systemic disease with multiple organ complications, making the standardization of medical care a challenge. We analyzed data from Japan's national registry to clarify the current treatment patterns and demographic features of Japanese DM patients. METHODS: Using the Japanese National Registry of Muscular Dystrophy (Remudy), we analyzed medical care practice for the multisystemic issues associated with adult DM type 1 patients, excluding congenital DM. RESULTS: We included 809 patients with a median age of 44.2 years. Among these patients, 15.8% used ventilators; 31.7% met the index considered at risk for sudden death due to cardiac conduction defects (PR interval over 240 milliseconds or QRS duration over 120 milliseconds) and 2.8% had implanted cardiac devices. Medication for heart failure was prescribed to 9.6% of patients. Overall, 21.2% of patients had abnormal glucose metabolism, of whom 42.9% were treated with oral medications. Among the oral medications, dipeptidyl peptidase-4 inhibitors were the most common. Cancers were observed in 3.7% of the patients, and endometrial and breast cancers were dominant. Mexiletine was prescribed for myotonia in 1.9% of the patients, and only 1% of the patients received medication for daytime sleepiness. DISCUSSION: This study shows difference in treatment patterns for DM1 in Japan compared with other countries, such as lower rates of use of implantable cardiac devices and higher rates of ventilator use. These data may be useful in discussions aimed at standardizing medical care for patients with DM.


Asunto(s)
Distrofias Musculares , Miotonía , Distrofia Miotónica , Adulto , Humanos , Distrofia Miotónica/epidemiología , Distrofia Miotónica/terapia , Distrofia Miotónica/complicaciones , Japón/epidemiología , Distrofias Musculares/complicaciones , Sistema de Registros
3.
J Neurol Sci ; 432: 120080, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923335

RESUMEN

Myotonic dystrophies (DM) are inherited autosomal dominant disorders affecting multiple organs. Currently available therapeutics for DM are limited; therefore, a patient registry is essential for therapeutic development and success of clinical trials targeting the diseases. We have developed a nationwide DM registry in Japan under the Registry of Muscular Dystrophy (Remudy). The registration process was patient-initiated; however, physicians certified the clinical information. The dataset includes all Naarden and TREAT-NMD core datasets and additional items covering major DM clinical features. As of March 2020, we enrolled 976 patients with genetically confirmed DM. The majority (99.9%) of these patients had DM1, with 11.4% having the congenital form. However, 1 patient had DM2. Upon classifying 969 symptomatic DM1 patients based on their age at onset, an earlier onset was associated with a longer CTG repeat length. Myotonia was the most frequent symptom, followed by hand disability, fatigue, and daytime sleepiness. The frequency of hand disabilities, constipation, and visual disturbances was higher for patients with congenital DM. According to a multiple regression analysis of objective clinical measurements related to prognosis and activities of daily living, CTG repeat length strongly influenced the grip strength, forced vital capacity, and QRS time in an electrocardiogram. However, the grip strength was only modestly related to disease duration. This report will shed light on the Japanese national DM registry, which has recruited a significant number of patients. The registry will provide invaluable data for planning clinical trials and improving the standard of care for patients.


Asunto(s)
Distrofia Miotónica , Actividades Cotidianas , Fatiga , Humanos , Japón/epidemiología , Distrofia Miotónica/epidemiología , Distrofia Miotónica/genética , Sistema de Registros
4.
J Neurol Sci ; 407: 116521, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31669729

RESUMEN

Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy with autosomal dominant inheritance resulting in periodic paralysis, arrhythmia characterized by QT prolongation, and dysmorphic features. The KCNJ2 gene has been identified as the causative gene of ATS. Herein, we reported 2 cases of a 21-year-old man and his mother, with episodic paralytic attacks and/or arrhythmia, which are characteristic of ATS. Both G144A, a reported ATS mutation, and V296F, a novel mutation, were identified in the KCNJ2 gene on the same allele from the proband and his mother, but not from his father. In the present study, we investigated the functional effect of these variants on the potassium channel Kir2.1 and the significance of the double mutation. G144A, V296F, and G144A-V296F mutant channels expressed in cultured cells revealed a loss-of-function effect of these mutations on Kir2.1. The K+ currents of G144A and G144A-V296F channels were more suppressed than that of V296F channel alone, whereas was no difference between G144A and G144A-V296F. To our knowledge, a double mutation in the KCNJ2 gene has not been reported previously. While either of 2 mutations potentially causes ATS, the G144A mutation might cause the dominant effect on the patients' clinical presentation.


Asunto(s)
Síndrome de Andersen/genética , Canales de Potasio de Rectificación Interna/genética , Alelos , Análisis Mutacional de ADN , Humanos , Masculino , Linaje , Fenotipo , Mutación Puntual , Adulto Joven
5.
ACS Appl Mater Interfaces ; 9(34): 28650-28658, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28795814

RESUMEN

Over the last few decades, because of the significant development of anion exchange membranes, increasing efforts have been devoted the realization of anion exchange membrane fuel cells (AEMFCs) that operate with the supply of hydrogen generated on-site. In this paper, ammonia was selected as a hydrogen source, following which the effect of conceivable impurities, unreacted NH3 and atmospheric CO2, on the performance of AEMFCs was established. As expected, we show that these impurities worsen the performance of AEMFCs significantly. Furthermore, with the help of in situ attenuated total reflection infrared (ATR-IR) spectroscopy, it was revealed that the degradation of the cell performance was primarily due to the inhibition of the hydrogen oxidation reaction (HOR). This is attributed to the active site occupation by CO-related adspecies derived from (bi)carbonate adspecies. Interestingly, this degradation in the HOR activity is suppressed in the presence of both NH3 and HCO3- because of the bicarbonate ion consumption reaction induced by the existence of NH3. Further analysis using in situ ATR-IR and electrochemical methods revealed that the poisonous CO-related adspecies were completely removed under NH3-HCO3- conditions, accompanied by the improvement in HOR activity. Finally, a fuel cell test was conducted by using the practical AEMFC with the supply of NH3-contained H2 gas to the anode and ambient air to the cathode. The result confirmed the validity of this positive effect of NH3-HCO3- coexistence on CO2-tolerence of AEMFCs. The cell performance achieved nearly 95% of that without any impurity in the fuels. These results clearly show the impact of the chemically induced bicarbonate ion consumption reaction on the realization of highly CO2-tolerent AEMFCs.

6.
Langmuir ; 31(42): 11717-23, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26447852

RESUMEN

The electrochemical oxidation of ammonia over Pt electrode in alkaline aqueous solutions was studied by in situ attenuated total reflection infrared (ATR-IR) spectroscopy. In 0.1 M NH3-1 M KOH, the band ascribable to the HNH bending mode of adsorbed NH3 was confirmed at 1662-1674 cm(-1) in the potential range of 0.1-1.1 V. The intensity of this band decreased continuously with a rise in potential, indicating the oxidative consumption of adsorbed ammonia. In response to this behavior, the band at 1269 cm(-1) appeared alternatively above 0.2 V, and its intensity reached the local maximal value at ca. 0.4 V. Note that this potential of ca. 0.4 V agreed well with the onset potential of ammonia oxidation, ca. 0.45 V, in the linear sweep voltammogram. This 1269 cm(-1) band was assigned to the NH2 wagging mode of N2H4, which was one of the active intermediates, N2H(x+y,ad) (x = 1 or 2, y = 1 or 2), according to the mechanism proposed by Gerischer and Mauere. To the best of our knowledge, this is the first report for the detection of N2H4 as a reaction intermediate over Pt electrode. Furthermore, the formation of bridged NO was also observed above the onset potential of ammonia oxidation, ca. 0.5 V. Such adsorbed NO species probably inhibit the electrochemical reaction due to the occupation of reaction sites at higher potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...