RESUMEN
In this study, we aimed to establish high-rate biological treatment of purified terephthalic acid (PTA) and dimethyl terephthalate (DMT) wastewater that minimizes the inhibitory effects of high concentration benzoate and acetate. To achieve this, we developed a novel bioreactor system and biostimulation strategy. An internal two-stage upflow anaerobic (ITUA) reactor was operated with (i) a packed bed containing green tuff medium underlying (ii) a compartment seeded with anaerobic granular sludge. Ethylene glycol was amended to stimulate syntrophic interactions. Continuous operation of the system for 1,026 days achieve an organic removal rate of 11.0 ± 0.6 kg COD/m3/d. The abundance of aromatic degraders significantly increased during operation. Thus, we successfully developed a high-rate treatment system to treat wastewater from the PTA/DMT manufacturing processes by activating syntrophs in an ITUA reactor.
Asunto(s)
Reactores Biológicos , Ácidos Ftálicos , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua , Aguas del Alcantarillado/química , Biodegradación AmbientalRESUMEN
In this study, a long-term operation of 2,747 days was conducted to evaluate the performance of the upflow anaerobic sludge blanket (UASB) reactor and investigated the degradation mechanisms of high-organic loading phenol wastewater. During the reactor operation, the maximum chemical oxygen demand (COD) removal rate of 6.1 ± 0.6 kg/m3/day under 1,680 mg/L phenol concentration was achieved in the mesophilic UASB reactor. After a significant change in the operating temperature from 24.0 ± 4.1 °C to 35.9 ± 0.6 °C, frequent observations of floating and washout of the bloated granular sludge (novel types of the bulking phenomenon) were made in the UASB reactor, suggesting that the change in operating temperature could be a trigger for the bulking phenomenon. Through the metagenomic analysis, phenol degradation mechanisms were predicted that phenol was converted to 4-hydroxybenzoate via two possible routes by Syntrophorhabdaceae and Pelotomaculaceae bacteria. Furthermore, the degradation of 4-hydroxybenzoate to benzoyl-CoA was carried out by members of Syntrophorhabdaceae and Smithellaceae. In the bulking sludge, a predominant presence of Nanobdellota, belonging to DPANN archaea, was detected. The metagenome-assembled genome of the Nanobdellota lacks many biosynthetic pathways and has several genes for the symbiotic lifestyle such as trimeric autotransporter adhesin-related protein. Furthermore, the Nanobdellota have significant correlations with several methanogenic archaea that are predominantly present in the UASB reactor. Considering the results of this study, the predominant Nanobdellota may negatively affect the growth of the methanogens through the parasitic lifestyle and change the balance of microbial interactions in the granular sludge ecosystem.
Asunto(s)
Ecosistema , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Parabenos , Fenol/metabolismo , Reactores Biológicos/microbiologíaRESUMEN
Polyethylene terephthalate (PET) is produced worldwide, mainly as material for plastic drink bottles. PET is produced by polymerization of purified terephthalate (PTA) or dimethyl terephthalate (DMT) with ethylene glycol. During the synthetic manufacturing processes of PTA and DMT, high organic loading wastewater is produced, which is typically treated separately by anaerobic wastewater treatment technologies. Given the high demand for PET, manufacturing plants are expanding globally, which will result in an increase in the amounts of PTA and DMT wastewater in need of treatment. In terms of effective treatment, the cotreatment of PTA and DMT wastewater has several advantages, including lower area and energy requirements. In this study, we examined the performance of an upflow anaerobic sludge blanket (UASB) reactor in cotreating PTA and DMT wastewater with high organic loading, evaluating its removal characteristics after 518 days of continuous operation. In addition, we performed a microbiome analysis of the UASB granular sludge to uncover the microbial interactions and metabolic functions within the reactor. By continuous operation, we achieved an organic removal rate of 6.6 kg m-3 day-1. In addition, we confirmed that aromatic compounds in the complex wastewater from the PTA and DMT manufacturing processes are biodegradable in the following order: benzoate > orthophthalate > terephthalate > isophthalate > p-toluic acid. 16S rRNA gene-based network analysis shows that anaerobic Woesearchaeales belonging to phylum Nanoarchaeota has a positive correlation with Methanoregula, Candidatus Methanofastidiosum, and Methanosarcina, suggesting a symbiotic relationship with methanogens in granular sludge. Shotgun metagenomic analysis revealed that terephthalate, isophthalate/orthophthalate, and benzoate were degraded by different members of Pelotomaculaceae and Syntrophorhabdaceae. According to the genomic information, we propose two new possible routes for orthophthalate degradation by the Syntrophorhabdaceae organism.
Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Benzoatos , Reactores Biológicos , Ácidos Ftálicos , ARN Ribosómico 16S/genética , Eliminación de Residuos LíquidosRESUMEN
An ecogenomic analysis of the methanogenic microbial community in a laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor treating soy sauce-processing wastewater revealed a synergistic metabolic network. Granular sludge samples were collected from the UASB reactor operated under psychrophilic (20°C) conditions with a COD removal rate >75%. A 16S rRNA gene amplicon sequencing-based microbial community analysis classified the major microbial taxa as Methanothrix, Methanobacterium, Pelotomaculaceae, Syntrophomonadaceae, Solidesulfovibrio, and members of the phyla Synergistota and Bacteroidota. Draft genomes of dominant microbial populations were recovered by metagenomic shotgun sequencing. Metagenomic- and metatranscriptomic-assisted metabolic reconstructions indicated that Synergistota- and Bacteroidota-related organisms play major roles in the degradation of amino acids. A metagenomic bin of the uncultured Bacteroidales 4484-276 clade encodes genes for proteins that may function in the catabolism of phenylalanine and tyrosine under microaerobic conditions. Syntrophomonadaceae and Pelotomaculaceae oxidize fatty acid byproducts presumably derived from the degradation of amino acids in syntrophic association with aceticlastic and hydrogenotrophic methanogen populations. Solidesulfovibrio organisms are responsible for the reduction of sulfite and may support the activity of hydrogenotrophic methanogens and other microbial populations by providing hydrogen and ammonia using nitrogen fixation-related proteins. Overall, functionally diverse anaerobic organisms unite to form a metabolic network that performs the complete degradation of amino acids in the psychrophilic methanogenic microbiota.
Asunto(s)
Bacterias , Reactores Biológicos/microbiología , Euryarchaeota , Alimentos de Soja , Eliminación de Residuos Líquidos , Aminoácidos , Anaerobiosis , Bacterias/clasificación , Euryarchaeota/clasificación , Genómica , Redes y Vías Metabólicas/genética , Metano , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Aguas ResidualesRESUMEN
Total suspended particulate matter and fine particulate matter were collected in five East Asian cities (Sapporo, Sagamihara, Kirishima, Shenyang, and Vladivostok) during warm and cold periods from 2017 to 2018. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-polycyclic aromatic hydrocarbons (NPAHs) were detected by high-performance liquid chromatography with a fluorescence detector. The average concentrations of ∑PAHs and ∑NPAHs differed significantly both temporally and spatially and were the lowest in Kirishima during the warm period (∑PAHs: 0.11 ± 0.06 ng m-3; ∑NPAHs: 1.23 ± 0.96 pg m-3) and the highest in Shenyang during the cold period (∑PAHs: 49.7 ± 21.8 ng m-3; ∑NPAHs: 357 ± 180 pg m-3). The average total benzo[a]pyrene-equivalent concentrations were also higher in Shenyang and Vladivostok than in Japanese cities. According to the results of source apportionment, traffic emissions impacted these cities in both the warm and cold periods, whereas coal combustion-generated effects were obvious in Shenyang and Vladivostok during the cold period. Furthermore, PAHs and NPAHs originating from the Asian continent, including Shenyang and Vladivostok, exerted some influence on Japanese cities, especially in the cold period. Compared to Japanese cities and Vladivostok, yearly variations in ∑PAHs and 1-nitropyrene in Shenyang showed that their concentrations were considerably lower than those reported in past studies, indicating the positive effects of air pollutant control policies in China. These results not only describe the current characteristics and yearly variations of PAHs and NPAHs in typical urban cities in East Asia but also, more importantly, reveal that the effects of the East Asian monsoon play an important role in the analysis of atmospheric behaviours of PAHs and NPAHs. Furthermore, this study supports the role of multinational cooperation to promote air pollution control in East Asia.
Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del AñoRESUMEN
Kirishima is a typical Japanese commercial city, famous for frequent volcanic activity. This is the first study to determine the characteristics of PM2.5-bound polycyclic and nitro-polycyclic aromatic hydrocarbons (PAHs and NPAHs) and water-soluble inorganic ions (WSIIs) in this city. In this study, the non-volcanic eruption period was taken as the target and daily PM2.5 samples were collected from 24 November to 21 December 2016. The daily concentrations in PM2.5 of Æ©PAHs, Æ©NPAHs, and Æ©WSIIs ranged from 0.36 to 2.90 ng/m3, 2.12 to 22.3 pg/m3, and 1.96 to 11.4 µg/m3, respectively. Through the results of the diagnostic ratio analyses of the PAHs, NPAHs, and WSIIs and the backward trajectory analysis of the air masses arriving in Kirishima, the emission sources of PAHs, NPAHs, and WSIIs in PM2.5 in Kirishima were influenced by the coal burning that came from the East Asian continent, although there was no influence from volcanic emission sources during the sampling period. The total benzo[a]pyrene (BaP)-equivalent concentration was lower than many other cities but the health risks in Kirishima were nonetheless notable. These findings are very important for future research on PM samples during the inactive Asian monsoon and volcanic eruption periods, to further understand the characteristics of air pollutants in Kirishima, and to contribute to the improvement in health of residents and a reduction in the atmospheric circulation of air pollutants in East Asia.
Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Asia Oriental , Iones , Japón , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año , AguaRESUMEN
Generally, Shochu distillery wastewater treatment is required the addition of alkalinity agents for an increase of pH in the UASB reactor. However, to reduce the cost of alkalinity supplementation, cost-effective reactor operation method has been desired. This study aimed to reduce the alkalinity supplementation for a thermophilic (55°C) multi-feed up-flow anaerobic sludge blanket (MF UASB) reactor for the low-cost treatment of the wastewater from the production of the Japanese distilled alcohol called shochu. Shochu distillery wastewater contains high concentrations of organics (46,500-57,600â mgCODâ L-1; COD: chemical oxygen demand) and volatile fatty acids (16,200-25,000â mgCODâ L-1), and low pH (4.1-4.5). With alkalinity supplementation of 0.045â mgCaCO3â mgCOD-1 using 24% NaOH, the MF UASB reactor achieved an 87 ± 2% COD removal rate with an organic loading rate of 24â kgCODâ m-3â day-1 for 554 days reactor operation (hydraulic retention time of 10â h and influent concentration of 10,000â mgCODâ L-1). The organic removal rate decreased to 19 ± 3% in the MF UASB reactor when alkalinity supplementation was reduced to 0.015â mgCaCO3·mgCOD-1. In this study , the minimum alkalinity supplementation was 0.045â mgCaCO3â mgCOD-1 at an organic loading rate of 24â kgCODâ m-3â day-1.
Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Anaerobiosis , Reactores Biológicos , Suplementos Dietéticos , Eliminación de Residuos LíquidosRESUMEN
Because of a rapid conformational inversion, bowl-shaped C5-symmetric corannulenes, though geometrically chiral, have not been directly resolved into their enantiomers. However, if this inversion equilibrium can be desymmetrized, chiral corannulenes enriched in either enantiomer can be obtained. We demonstrated this possibility using pentasubstituted corannulenes 4 and 5 carrying amide-appended thioalkyl side chains. Compound 4 displays chiroptical activity in a chiral hydrocarbon such as limonene. Because compound 5 carries a chiral center in the side chains, its enantiomers 5R and 5S show chiroptical activity even in achiral solvents such as CHCl3 and methylcyclohexane. In sharp contrast, when the side chains bear no amide functionality (1 and 2R), no chiroptical activity emerges even in limonene or with a chiral center in the side chains. Detailed investigations revealed that the peripheral amide units in 4 and 5 are hydrogen-bonded only "intramolecularly" along the corannulene periphery, affording cyclic amide networks with clockwise and anticlockwise geometries. Although this networking gives rise to four stereoisomers, only two, which are enantiomeric to one another, are suggested computationally to exist in the equilibrated system. In a chiral environment (chiral solvent or side chain), their thermodynamic stabilities are certainly unequal, so the bowl-inversion equilibrium can be desymmetrized. However, this is not the case when the system contains a protic solvent that can deteriorate the hydrogen-bonding network. When the enantiomeric purity of limonene as the solvent is varied, the chiroptical activity of the corannulene core changes nonlinearly with its enantiomeric excess (majority rule).
RESUMEN
Wavelength effects on the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate (AC) mediated by native and modified γ-cyclodextrins (CDs) were examined in different solvents at varying temperatures to manipulate the photochirogenic outcomes beyond the thermodynamically determined re/si-enantiotopic face selectivity upon 2 : 1 complexation of AC with CD in the ground state. Indeed, the stereochemical outcomes, i.e. syn/anti, head-to-tail/head-to-head (HT/HH) and in particular enantiomer ratios, were critical functions of the irradiation wavelength, irrespective of the CD host employed. Furthermore, the wavelength effects observed strongly depended on the host structure, reaction temperature and solvent employed, for which altered stacking geometry of the complexed AC pair is thought to be responsible. By optimizing the irradiation wavelength, chiral host, temperature and solvent, an enantiomeric excess of up to 54 and -37% were achieved for chiral syn-HT and anti-HH dimers.
Asunto(s)
Antracenos/química , Ácidos Carboxílicos/química , Procesos Fotoquímicos , Solventes/química , Temperatura , gamma-Ciclodextrinas/química , Ciclización , Dimerización , Modelos Moleculares , Conformación Molecular , EstereoisomerismoRESUMEN
Experiments to characterize retained sludge in a down-flow hanging sponge (DHS) reactor fed with upflow anaerobic sludge blanket (UASB) treated sewage under moderate conditions were conducted. Plenty of oxygen was supplied through the DHS reactor without aeration and the effluent qualities after the reactor were comparable to activated sludge processes. The average excess sludge production rate was 0.09 g SS g(-1) COD removed. The DHS reactor maintained a high sludge concentration of 26.9 g VSS L(-1) sponge, resulting in a low loading rate of 0.032 g COD g(-1) VSS day(-1). The endogenous respiration rate of DHS sludge was comparable to previously reported aerobic sludges. The numbers of microfauna were one order of magnitude greater than those in activated sludge. The results indicated that low excess sludge production was attributable to the high sludge concentration, sufficient oxygen supply, adequate endogenous respiration rate, and a high density and diversity of microfauna.