Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Infect Chemother ; 30(2): 164-168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37739181

RESUMEN

This study measured IgG antibody titers against spike (S) and nucleocapsid (N) proteins of SARS-CoV-2 before vaccination and after the second and third doses of an mRNA vaccine in staff and residents of a nursing home in Niigata, Japan. The study included 52 staff members, of whom six (11.5%) were previously infected with SARS-CoV-2, and 32 older residents, of whom 22 (68.8%) were previously infected. All participants received the first two doses in April-July 2021 and a third dose in January-March 2022. In staff, the median anti-S antibody titers (interquartile range) in previously infected and SARS-CoV-2-naïve individuals before vaccination were 960 (592-1,926) and 0.5 (0.0-2.1) arbitrary units (AU)/mL. Anti-S antibody titers 5 months after the second and third doses in previously infected staff were 7,391 (5,230-7,747) and 10,195 (5,582-13,886) AU. In residents, the median anti-S antibody titers in previously infected and naïve individuals before vaccination were 734 (425-1,934) and 1.1 (0.0-3.1) AU/mL. Anti-S antibody titers at 5 months after the second and third doses in previously infected residents were 15,872 (9,683-21,557) and 13,813 (6,689-20,839) AU/mL; however, there were no significant differences in titers between the second and third doses in previously infected residents. Anti-N antibody titers were higher in previously infected than naïve individuals, and titers decreased chronologically.


Asunto(s)
COVID-19 , Humanos , Japón/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2/genética , Casas de Salud , Brotes de Enfermedades , ARN Mensajero , Vacunación , Inmunoglobulina G , Anticuerpos Antivirales
2.
Nat Commun ; 13(1): 7591, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36481732

RESUMEN

Antimicrobial resistance (AMR) is a global health problem. Despite the enormous efforts made in the last decade, threats from some species, including drug-resistant Neisseria gonorrhoeae, continue to rise and would become untreatable. The development of antibiotics with a different mechanism of action is seriously required. Here, we identified an allosteric inhibitory site buried inside eukaryotic mitochondrial heme-copper oxidases (HCOs), the essential respiratory enzymes for life. The steric conformation around the binding pocket of HCOs is highly conserved among bacteria and eukaryotes, yet the latter has an extra helix. This structural difference in the conserved allostery enabled us to rationally identify bacterial HCO-specific inhibitors: an antibiotic compound against ceftriaxone-resistant Neisseria gonorrhoeae. Molecular dynamics combined with resonance Raman spectroscopy and stopped-flow spectroscopy revealed an allosteric obstruction in the substrate accessing channel as a mechanism of inhibition. Our approach opens fresh avenues in modulating protein functions and broadens our options to overcome AMR.


Asunto(s)
Antibacterianos , Hemo , Antibacterianos/farmacología
4.
Viruses ; 14(11)2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36423190

RESUMEN

An outbreak of coronavirus disease 2019 (COVID-19) occurred in a nursing home in Niigata, Japan, November 2020, with an attack rate of 32.0% (63/197). The present study was aimed at assessing the pre-vaccination seroprevalence almost half a year after the COVID-19 outbreak in residents and staff in the facility, along with an assessment of the performance of the enzyme-linked immunosorbent assay (ELISA) and the chemiluminescent immunoassay (CLIA), regarding test seropositivity and seronegativity in detecting immunoglobulin G (IgG) anti-severe acute respiratory syndrome 2 (SARS-CoV-2) antibodies (anti-nucleocapsid (N) and spike (S) proteins). A total of 101 people (30 reverse transcription PCR (RT-PCR)-positive and 71 RT-PCR-negative at the time of the outbreak in November 2020) were tested for anti-IgG antibody titers in April 2021, and the seroprevalence was approximately 40.0-60.0% for residents and 10.0-20.0% for staff, which was almost consistent with the RT-PCR test results that were implemented during the outbreak. The seropositivity for anti-S antibodies showed 90.0% and was almost identical to the RT-PCR positives even after approximately six months of infections, suggesting that the anti-S antibody titer test is reliable for a close assessment of the infection history. Meanwhile, seropositivity for anti-N antibodies was relatively low, at 66.7%. There was one staff member and one resident that were RT-PCR-negative but seropositive for both anti-S and anti-N antibody, indicating overlooked infections despite periodical RT-PCR testing at the time of the outbreak. Our study indicated the impact of transmission of SARS-CoV-2 in a vulnerable elderly nursing home in the pre-vaccination period and the value of a serological study to supplement RT-PCR results retrospectively.


Asunto(s)
COVID-19 , Anciano , Humanos , Estudios Seroepidemiológicos , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , Japón/epidemiología , Estudios Retrospectivos , SARS-CoV-2/genética , Casas de Salud , Vacunación , Inmunoglobulina G
5.
Foodborne Pathog Dis ; 19(6): 400-407, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35584259

RESUMEN

Enterohemorrhagic Escherichia coli O157 (EHEC) causes severe complications such as hemolytic uremic syndrome. Contaminated ready-to-eat (RTE) food is one of the vehicles of multijurisdictional outbreaks of foodborne disease worldwide. Multijurisdictional (covering cities, towns, and villages) outbreaks of EHEC are usually linked to an increase in cases, and here we describe such an outbreak involving 29 cases in October 2017 in the Niigata Prefecture. After prefecture-wide active case finding, we conducted a case-control study of 29 cases with eligible data who tested positive for EHEC. To determine the association of the outbreak with risk factors, we compared these cases with 38 controls selected from family and acquaintances who were both symptom free and tested negative for EHEC. The largest number of cases was in the 20-29-year age group (7/29; 24%) and most were women (20/29; 69%). All 29 cases had an identical or similar multilocus variable number tandem-repeat analysis (MLVA) profile. Of these, 76% (22/29) had consumed some type of grilled skewered meat. Also, 69% (20/29) had consumed grilled skewered meat produced by company X. EHEC infection was strongly associated with the consumption of grilled skewered meat produced by any food processing company (odds ratio [OR] = 11.8, confidence interval [95% CI]: 3.7-37.4) and by company X (OR = 9.8, 95% CI: 3.2-30.7). At company X, the skewered meat was grilled to 95°C and then removed from the grilling area to meat trays. The meat trays were not sufficiently washed and disinfected. Testing indicated that the facility was negative for EHEC but four asymptomatic employees tested positive for EHEC. Company X was temporarily closed and voluntarily recalled the foods. We recommend that all employees sufficiently wash and disinfect meat trays to prevent contamination of RTE food, avoid cross-contamination of grilled skewered meat through the environment by regularly cleaning the facility, and appropriately practice self-health care.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Escherichia coli O157 , Estudios de Casos y Controles , Brotes de Enfermedades , Infecciones por Escherichia coli/epidemiología , Femenino , Humanos , Japón/epidemiología , Masculino , Carne
6.
Stem Cell Reports ; 17(2): 337-351, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35063130

RESUMEN

Loss-of-function mutations in PKP2, which encodes plakophilin-2, cause arrhythmogenic cardiomyopathy (AC). Restoration of deficient molecules can serve as upstream therapy, thereby requiring a human model that recapitulates disease pathology and provides distinct readouts in phenotypic analysis for proof of concept for gene replacement therapy. Here, we generated isogenic induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with precisely adjusted expression of plakophilin-2 from a patient with AC carrying a heterozygous frameshift PKP2 mutation. After monolayer differentiation, plakophilin-2 deficiency led to reduced contractility, disrupted intercalated disc structures, and impaired desmosome assembly in iPSC-CMs. Allele-specific fluorescent labeling of endogenous DSG2 encoding desmoglein-2 in the generated isogenic lines enabled real-time desmosome-imaging under an adjusted dose of plakophilin-2. Adeno-associated virus-mediated gene replacement of PKP2 recovered contractility and restored desmosome assembly, which was sequentially captured by desmosome-imaging in plakophilin-2-deficient iPSC-CMs. Our isogenic set of iPSC-CMs recapitulates AC pathology and provides a rapid and convenient cellular platform for therapeutic development.


Asunto(s)
Arritmias Cardíacas/patología , Desmosomas/fisiología , Contracción Miocárdica/fisiología , Placofilinas/metabolismo , Arritmias Cardíacas/genética , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Femenino , Edición Génica , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Linaje , Placofilinas/genética
7.
Front Microbiol ; 12: 749149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777297

RESUMEN

The coronavirus disease 2019 (COVID-19) has caused a serious disease burden and poses a tremendous public health challenge worldwide. Here, we report a comprehensive epidemiological and genomic analysis of SARS-CoV-2 from 63 patients in Niigata City, a medium-sized Japanese city, during the early phase of the pandemic, between February and May 2020. Among the 63 patients, 32 (51%) were female, with a mean (±standard deviation) age of 47.9 ± 22.3 years. Fever (65%, 41/63), malaise (51%, 32/63), and cough (35%, 22/63) were the most common clinical symptoms. The median C t value after the onset of symptoms lowered within 9 days at 20.9 cycles (interquartile range, 17-26 cycles), but after 10 days, the median C t value exceeded 30 cycles (p < 0.001). Of the 63 cases, 27 were distributed in the first epidemic wave and 33 in the second, and between the two waves, three cases from abroad were identified. The first wave was epidemiologically characterized by a single cluster related to indoor sports activity spread in closed settings, which included mixing indoors with families, relatives, and colleagues. The second wave showed more epidemiologically diversified events, with most index cases not related to each other. Almost all secondary cases were infected by droplets or aerosols from closed indoor settings, but at least two cases in the first wave were suspected to be contact infections. Results of the genomic analysis identified two possible clusters in Niigata City, the first of which was attributed to clade S (19B by Nexstrain clade) with a monophyletic group derived from the Wuhan prototype strain but that of the second wave was polyphyletic suggesting multiple introductions, and the clade was changed to GR (20B), which mainly spread in Europe in early 2020. These findings depict characteristics of SARS-CoV-2 transmission in the early stages in local community settings during February to May 2020 in Japan, and this integrated approach of epidemiological and genomic analysis may provide valuable information for public health policy decision-making for successful containment of chains of infection.

8.
Sci Rep ; 11(1): 23056, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845242

RESUMEN

Cardiogenesis requires the orchestrated spatiotemporal tuning of BMP signalling upon the balance between induction and counter-acting suppression of the differentiation of the cardiac tissue. SMADs are key intracellular transducers and the selective degradation of SMADs by the ubiquitin-proteasome system is pivotal in the spatiotemporal tuning of BMP signalling. However, among three SMADs for BMP signalling, SMAD1/5/9, only the specific E3 ligase of SMAD9 remains poorly investigated. Here, we report for the first time that SMAD9, but not the other SMADs, is ubiquitylated by the E3 ligase ASB2 and targeted for proteasomal degradation. ASB2, as well as Smad9, is conserved among vertebrates. ASB2 expression was specific to the cardiac region from the very early stage of cardiac differentiation in embryogenesis of mouse. Knockdown of Asb2 in zebrafish resulted in a thinned ventricular wall and dilated ventricle, which were rescued by simultaneous knockdown of Smad9. Abundant Smad9 protein leads to dysregulated cardiac differentiation through a mechanism involving Tbx2, and the BMP signal conducted by Smad9 was downregulated under quantitative suppression of Smad9 by Asb2. Our findings demonstrate that ASB2 is the E3 ligase of SMAD9 and plays a pivotal role in cardiogenesis through regulating BMP signalling.


Asunto(s)
Corazón , Proteína Smad8 , Proteínas Supresoras de la Señalización de Citocinas , Animales , Humanos , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Células HEK293 , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Proteína Smad8/biosíntesis , Proteína Smad8/fisiología , Proteínas Supresoras de la Señalización de Citocinas/biosíntesis , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Ubiquitina/química , Ubiquitina/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra
9.
New Phytol ; 230(3): 889-901, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33454982

RESUMEN

The DELAY OF GERMINATION1 (DOG1) family genes (DFGs) in Arabidopsis thaliana are involved in seed dormancy, reserve accumulation, and desiccation tolerance. Decoding the molecular evolution of DFGs is key to understanding how these seed programs evolved. This article demonstrates that DFGs have diverged in the four lineages DOG1, DOG1-LIKE4 (DOGL4), DOGL5 and DOGL6, whereas DOGL1, DOGL2 and DOGL3 arose separately within the DOG1 lineage. The systematic DFG nomenclature proposed in this article addresses the current issues of inconsistent DFG annotation and highlights DFG genomic synteny in angiosperms. DFG pseudogenes, or collapsed coding sequences, hidden in the genomes of early-diverging angiosperms are documented here. They suggest ancient birth and loss of DFGs over the course of angiosperm evolution. The proposed models suggest that the origin of DFG diversification dates back to the most recent common ancestor of living angiosperms. The presence of a single form of DFG in nonflowering plants is discussed. Phylogenetic analysis of gymnosperm, lycophyte, and liverwort DFGs and similar genes found in mosses and algae suggests that DFGs diverged from the TGACG motif-binding transcription factor genes before the divergence of the bryophyte lineage.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Evolución Molecular , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Germinación , Filogenia , Semillas/metabolismo
10.
EMBO Rep ; 22(1): e50949, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33251722

RESUMEN

AMP-activated protein kinase (AMPK) is a multifunctional kinase that regulates microtubule (MT) dynamic instability through CLIP-170 phosphorylation; however, its physiological relevance in vivo remains to be elucidated. In this study, we identified an active form of AMPK localized at the intercalated disks in the heart, a specific cell-cell junction present between cardiomyocytes. A contractile inhibitor, MYK-461, prevented the localization of AMPK at the intercalated disks, and the effect was reversed by the removal of MYK-461, suggesting that the localization of AMPK is regulated by mechanical stress. Time-lapse imaging analysis revealed that the inhibition of CLIP-170 Ser-311 phosphorylation by AMPK leads to the accumulation of MTs at the intercalated disks. Interestingly, MYK-461 increased the individual cell area of cardiomyocytes in CLIP-170 phosphorylation-dependent manner. Moreover, heart-specific CLIP-170 S311A transgenic mice demonstrated elongation of cardiomyocytes along with accumulated MTs, leading to progressive decline in cardiac contraction. In conclusion, these findings suggest that AMPK regulates the cell shape and aspect ratio of cardiomyocytes by modulating the turnover of MTs through homeostatic phosphorylation of CLIP-170 at the intercalated disks.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Miocitos Cardíacos , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Forma de la Célula , Ratones , Proteínas Asociadas a Microtúbulos , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Neoplasias , Fosforilación
11.
Hum Genet ; 140(2): 231-240, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32683493

RESUMEN

We present selected topics of population genetics and molecular phylogeny. As several excellent review articles have been published and generally focus on European and American scientists, here, we emphasize contributions by Japanese researchers. Our review may also be seen as a belated 50-year celebration of Motoo Kimura's early seminal paper on the molecular clock, published in 1968.


Asunto(s)
Genética de Población , Humanos , Filogenia
12.
FASEB J ; 34(5): 6399-6417, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32175648

RESUMEN

Brugada syndrome (BrS) is an inherited channelopathy responsible for almost 20% of sudden cardiac deaths in patients with nonstructural cardiac diseases. Approximately 70% of BrS patients, the causative gene mutation(s) remains unknown. In this study, we used whole exome sequencing to investigate candidate mutations in a family clinically diagnosed with BrS. A heterozygous 1616G>A substitution (R539Q mutation) was identified in the transmembrane protein 168 (TMEM168) gene of symptomatic individuals. Similar to endogenous TMEM168, both TMEM168 wild-type (WT) and mutant proteins that were ectopically induced in HL-1 cells showed nuclear membrane localization. A significant decrease in Na+ current and Nav 1.5 protein expression was observed in HL-1 cardiomyocytes expressing mutant TMEM168. Ventricular tachyarrhythmias and conduction disorders were induced in the heterozygous Tmem168 1616G>A knock-in mice by pharmacological stimulation, but not in WT mice. Na+ current was reduced in ventricular cardiomyocytes isolated from the Tmem168 knock-in heart, and Nav 1.5 expression was also impaired. This impairment was dependent on increased Nedd4-2 binding to Nav 1.5 and subsequent ubiquitination. Collectively, our results show an association between the TMEM168 1616G>A mutation and arrhythmogenesis in a family with BrS.


Asunto(s)
Síndrome de Brugada/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Mutación , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Adulto , Animales , Síndrome de Brugada/patología , Femenino , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Linaje , Adulto Joven
13.
FASEB J ; 34(2): 2041-2054, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31916304

RESUMEN

Most eukaryotic cells generate adenosine triphosphate (ATP) through the oxidative phosphorylation system (OXPHOS) to support cellular activities. In cultured cell-based experiments, we recently identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS, and showed that G0s2 protects cultured cardiomyocytes from hypoxia. In this study, we examined the in vivo protective role of G0s2 against hypoxia by generating both loss-of-function and gain-of-function models of g0s2 in zebrafish. Zebrafish harboring transcription activator-like effector nuclease (TALEN)-mediated knockout of g0s2 lost hypoxic tolerance. Conversely, cardiomyocyte-specific transgenic zebrafish hearts exhibited strong tolerance against hypoxia. To clarify the mechanism by which G0s2 protects cardiac function under hypoxia, we introduced a mitochondrially targeted FRET-based ATP biosensor into zebrafish heart to visualize ATP dynamics in in vivo beating hearts. In addition, we employed a mosaic overexpression model of g0s2 to compare the contraction and ATP dynamics between g0s2-expressing and non-expressing cardiomyocytes, side-by-side within the same heart. These techniques revealed that g0s2-expressing cardiomyocyte populations exhibited preserved contractility coupled with maintained intra-mitochondrial ATP concentrations even under hypoxic condition. Collectively, these results demonstrate that G0s2 provides ischemic tolerance in vivo by maintaining ATP production, and therefore represents a promising therapeutic target for hypoxia-related diseases.


Asunto(s)
Proteínas de Ciclo Celular , Transferencia Resonante de Energía de Fluorescencia , Isquemia Miocárdica , Miocardio , Proteínas de Pez Cebra , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación Oxidativa , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
FASEB J ; 34(1): 1859-1871, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914602

RESUMEN

The respiratory chain (RC) transports electrons to form a proton motive force that is required for ATP synthesis in the mitochondria. RC disorders cause mitochondrial diseases that have few effective treatments; therefore, novel therapeutic strategies are critically needed. We previously identified Higd1a as a positive regulator of cytochrome c oxidase (CcO) in the RC. Here, we test that Higd1a has a beneficial effect by increasing CcO activity in the models of mitochondrial dysfunction. We first demonstrated the tissue-protective effects of Higd1a via in situ measurement of mitochondrial ATP concentrations ([ATP]mito) in a zebrafish hypoxia model. Heart-specific Higd1a overexpression mitigated the decline in [ATP]mito under hypoxia and preserved cardiac function in zebrafish. Based on the in vivo results, we examined the effects of exogenous HIGD1A on three cellular models of mitochondrial disease; notably, HIGD1A improved respiratory function that was coupled with increased ATP synthesis and demonstrated cellular protection in all three models. Finally, enzyme kinetic analysis revealed that Higd1a significantly increased the maximal velocity of the reaction between CcO and cytochrome c without changing the affinity between them, indicating that Higd1a is a positive modulator of CcO. These results corroborate that Higd1a, or its mimic, provides therapeutic options for the treatment of mitochondrial diseases.


Asunto(s)
Transporte de Electrón/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico/fisiología , Línea Celular , Citocromos c/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Células HEK293 , Humanos , Hipoxia/metabolismo , Cinética , Oxidación-Reducción , Respiración , Pez Cebra/metabolismo
15.
Eur J Nutr ; 59(6): 2411-2425, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31506767

RESUMEN

PURPOSE: Extra virgin olive oil (EVOO) and flaxseed oil (FO) contain a variety of constituents beneficial for chronic inflammation and cardio-metabolic derangement. However, little is known about the impact of EVOO and FO on dysbiosis of gut microbiota, intestinal immunity, and barrier. We, therefore, aimed to assess the impact of EVOO and FO on gut microbiota, mucosal immunity, barrier integrity, and metabolic health in mice. METHODS: C57BL/6 J mice were exposed to a low-fat (LF), lard (HF), high fat-extra virgin olive oil (HF-EVOO), or high fat-flaxseed oil (HF-FO) diet for 10 weeks. Gut microbiota assessment was undertaken using 16S rRNA sequencing. Levels of mRNA for genes involved in intestinal inflammation and barrier maintenance in the intestine and bacterial infiltration in the liver were measured by qPCR. RESULTS: HF-EVOO or HF-FO mice showed greater diversity in gut microbiota as well as a lower abundance of the Firmicutes phylum in comparison with HF mice (P < 0.05). The qPCR analyses revealed that mRNA level of FoxP3, a transcription factor, and IL-10, an inducer of regulatory T cells, was significantly elevated in the intestines of mice-fed HF-EVOO in comparison with mice-fed HF (P < 0.05). The mRNA level of the antimicrobial peptide, RegӀӀӀγ, was markedly elevated in the intestines of HF-EVOO and HF-FO compared with HF group (P < 0.05). CONCLUSIONS: Our data suggest that the consumption of EVOO or FO can beneficially impact gut microbiota, enhance gut immunity, and assist in the preservation of metabolic health in mice.


Asunto(s)
Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Aceite de Linaza/farmacología , Aceite de Oliva/farmacología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Lino/química , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Olea/química , ARN Ribosómico 16S/genética
16.
J Biol Chem ; 294(40): 14562-14573, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31371451

RESUMEN

Oxidative phosphorylation generates most of the ATP in respiring cells. ATP is an essential energy source, especially in cardiomyocytes because of their continuous contraction and relaxation. Previously, we reported that G0/G1 switch gene 2 (G0S2) positively regulates mitochondrial ATP production by interacting with FOF1-ATP synthase. G0S2 overexpression mitigates ATP decline in cardiomyocytes and strongly increases their hypoxic tolerance during ischemia. Here, we show that G0S2 protein undergoes proteasomal degradation via a cytosolic molecular triage system and that inhibiting this process increases mitochondrial ATP production in hypoxia. First, we performed screening with a library of siRNAs targeting ubiquitin-related genes and identified RING finger protein 126 (RNF126) as an E3 ligase involved in G0S2 degradation. RNF126-deficient cells exhibited prolonged G0S2 protein turnover and reduced G0S2 ubiquitination. BCL2-associated athanogene 6 (BAG6), involved in the molecular triage of nascent membrane proteins, enhanced RNF126-mediated G0S2 ubiquitination both in vitro and in vivo Next, we found that Glu-44 in the hydrophobic region of G0S2 acts as a degron necessary for G0S2 polyubiquitination and proteasomal degradation. Because this degron was required for an interaction of G0S2 with BAG6, an alanine-replaced G0S2 mutant (E44A) escaped degradation. In primary cultured cardiomyocytes, both overexpression of the G0S2 E44A mutant and RNF126 knockdown effectively attenuated ATP decline under hypoxic conditions. We conclude that the RNF126/BAG6 complex contributes to G0S2 degradation and that interventions to prevent G0S2 degradation may offer a therapeutic strategy for managing ischemic diseases.


Asunto(s)
Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Isquemia Miocárdica/genética , Fosforilación Oxidativa , Ubiquitina-Proteína Ligasas/genética , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Alanina/genética , Proteínas de Ciclo Celular/química , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mitocondrias/genética , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética
17.
J Mol Cell Cardiol ; 129: 257-265, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30880253

RESUMEN

To date, there is no established treatment for heart failure with preserved ejection fraction (HFpEF). Dipeptidyl peptidase-IV (DPP-IV) inhibitors reportedly have improved not only diabetes mellitus but also heart failure with systolic dysfunction in experimental models. We investigated the effects of a DPP-IV inhibitor on HFpEF in rats. Dahl salt-sensitive rats were fed either high-salt (high-salt diet (HSD): 8% NaCl) or low-salt diets (0.3% NaCl) from 6.5 weeks of age. They were then treated with or without a DPP-IV inhibitor, vildagliptin (10 mg/kg/day, orally), from 11 weeks of age for 9 weeks and analyzed at the age of 20 weeks. HSD rats mimicked the pathophysiology of HFpEF. There were no differences in heart rate, blood pressure, left ventricular (LV) systolic function, or the extent of LV hypertrophy between HSD rats with or without vildagliptin. However, vildagliptin decreased LV end-diastolic pressure, the most reliable hemodynamic parameter of HFpEF in HSD rats. Vildagliptin also decreased the LV distensibility index, a sensitive marker of LV diastolic function in HSD rats. Vildagliptin decreased the expression of collagen genes in HSD hearts and attenuated LV interstitial fibrosis (HSD with vehicle and vildagliptin, 2.9% vs. 1.9%; P < 0.05). Furthermore, vildagliptin administration reduced both plasma renin activity and aldosterone concentrations in HSD rats. A DPP-IV inhibitor, vildagliptin, improved the severity of LV fibrosis, and thus, diastolic dysfunction of HFpEF in Dahl salt-sensitive hypertensive rats. DPP-IV inhibitors are promising medicines for treatment of HFpEF in patients with diabetes mellitus.


Asunto(s)
Diástole/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Animales , Biomarcadores/metabolismo , Colágeno/genética , Colágeno/metabolismo , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Pruebas de Función Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Hipertensión/genética , Hipertensión/fisiopatología , Inflamación/patología , Pruebas de Función Renal , Masculino , Miocardio/patología , Ratas Endogámicas Dahl , Sistema Renina-Angiotensina/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Vildagliptina/farmacología
18.
Circulation ; 139(18): 2157-2169, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30764634

RESUMEN

BACKGROUND: Bradyarrhythmia is a common clinical manifestation. Although the majority of cases are acquired, genetic analysis of families with bradyarrhythmia has identified a growing number of causative gene mutations. Because the only ultimate treatment for symptomatic bradyarrhythmia has been invasive surgical implantation of a pacemaker, the discovery of novel therapeutic molecular targets is necessary to improve prognosis and quality of life. METHODS: We investigated a family containing 7 individuals with autosomal dominant bradyarrhythmias of sinus node dysfunction, atrial fibrillation with slow ventricular response, and atrioventricular block. To identify the causative mutation, we conducted the family-based whole exome sequencing and genome-wide linkage analysis. We characterized the mutation-related mechanisms based on the pathophysiology in vitro. After generating a transgenic animal model to confirm the human phenotypes of bradyarrhythmia, we also evaluated the efficacy of a newly identified molecular-targeted compound to upregulate heart rate in bradyarrhythmias by using the animal model. RESULTS: We identified one heterozygous mutation, KCNJ3 c.247A>C, p.N83H, as a novel cause of hereditary bradyarrhythmias in this family. KCNJ3 encodes the inwardly rectifying potassium channel Kir3.1, which combines with Kir3.4 (encoded by KCNJ5) to form the acetylcholine-activated potassium channel ( IKACh channel) with specific expression in the atrium. An additional study using a genome cohort of 2185 patients with sporadic atrial fibrillation revealed another 5 rare mutations in KCNJ3 and KCNJ5, suggesting the relevance of both genes to these arrhythmias. Cellular electrophysiological studies revealed that the KCNJ3 p.N83H mutation caused a gain of IKACh channel function by increasing the basal current, even in the absence of m2 muscarinic receptor stimulation. We generated transgenic zebrafish expressing mutant human KCNJ3 in the atrium specifically. It is interesting to note that the selective IKACh channel blocker NIP-151 repressed the increased current and improved bradyarrhythmia phenotypes in the mutant zebrafish. CONCLUSIONS: The IKACh channel is associated with the pathophysiology of bradyarrhythmia and atrial fibrillation, and the mutant IKACh channel ( KCNJ3 p.N83H) can be effectively inhibited by NIP-151, a selective IKACh channel blocker. Thus, the IKACh channel might be considered to be a suitable pharmacological target for patients who have bradyarrhythmia with a gain-of-function mutation in the IKACh channel.


Asunto(s)
Fibrilación Atrial , Bloqueo Atrioventricular , Bradicardia , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Enfermedades Genéticas Congénitas , Mutación Missense , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Bloqueo Atrioventricular/genética , Bloqueo Atrioventricular/metabolismo , Bloqueo Atrioventricular/patología , Bloqueo Atrioventricular/fisiopatología , Benzopiranos/farmacología , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/patología , Bradicardia/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Enfermedades Genéticas Congénitas/fisiopatología , Humanos , Masculino , Xenopus laevis , Pez Cebra
19.
ESC Heart Fail ; 6(2): 406-415, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30690923

RESUMEN

AIMS: Cardiac myosin light chain kinase (cMLCK) phosphorylates ventricular myosin regulatory light chain 2 (MLC2v) and regulates sarcomere and cardiomyocyte organization. However, few data exist regarding the relationship between cMLCK mutations and MLC2v phosphorylation, particularly in terms of developing familial dilated cardiomyopathy (DCM) in whom cMLCK gene mutations were identified. The purpose of the present study was to investigate functional consequences of cMLCK mutations in DCM patients. METHODS AND RESULTS: The diagnosis of DCM was based on the patients' history and on echocardiography. We screened cMLCK gene mutations in DCM probands with high resolution melting analysis. Known DCM-causing genes mutations were excluded by exome sequencing of family members. MLC2v phosphorylation was analysed by Phos-tag sodium dodecyl sulfate-polyacrylamide gel electrophoresis assays. We also performed ADP-Glo assays for determining the total amount of adenosine triphosphate used in the kinase reaction. Unrelated DCM probands (109 males and 40 females) were enrolled in this study, of which 16 were familial and 133 sporadic. By mutation screening, a truncation variant of c1915-1 g>t (p.Pro639Valfs*15) was identified, which was not detected in 400 chromosomes of 200 healthy volunteers; it is listed in the Human Genetic Variation Database with an allele frequency < 0.001. In the proband, the presence of mutations in known DCM-causing genes was excluded with exome analysis. Familial analysis identified a 19-year-old male carrier who manifested slight left ventricular dilation with preserved systolic function. Phosphorylation assays analysed by Phos-tag SDS-PAGE revealed that the identified p.Pro639Valfs*15 mutation results in a complete lack of kinase activity, although it did not affect wild-type cMLCK activity. ADP-Glo assays confirmed that the mutant cMLCK had no kinase activity, whereas wild-type cMLCK had a Km value of 5.93 ± 1.47 µM and a Vmax of 1.28 ± 0.03 mol/min/mol kinase. CONCLUSIONS: These results demonstrate that a truncation mutation in the cMLCK gene p.Pro639Valfs*15 can be associated with significant impairment of MLC2v phosphorylation and possibly with development of DCM, although a larger study of DCM patients is required to determine the prevalence of this mutation and further strengthen its association with disease development.


Asunto(s)
Cardiomiopatía Dilatada/genética , ADN/genética , Ventrículos Cardíacos/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Adulto , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Análisis Mutacional de ADN , Ecocardiografía , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Contracción Miocárdica/fisiología , Miocitos Cardíacos/patología , Quinasa de Cadena Ligera de Miosina/metabolismo , Linaje , Sarcómeros/metabolismo , Sarcómeros/patología , Adulto Joven
20.
Nihon Shokakibyo Gakkai Zasshi ; 115(10): 914-922, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-30305573

RESUMEN

A 51-year-old Brazilian female who had IgD-lambda type multiple myeloma presented with epigastralgia and obstructive jaundice during her follow-up. Contrast-enhanced computed tomography (CT) showed an enhanced mass of 25mm in the pancreatic head, and endoscopic retrograde cholangiopancreatography revealed smooth stenoses in the lower bile duct and main pancreatic duct (MPD) of the head. We diagnosed the patient with extramedullary pancreatic metastasis of multiple myelomas. Plastic stents were endoscopically placed into both the common bile duct and MPD. One week later, she suffered a repeat episode of epigastralgia. A subsequent CT scan showed obstructive pancreatitis due to another mass, 30mm in size, emerging rapidly in the pancreatic body. Pancreatitis improved after we replaced the plastic stent with a longer one so that the distal end reached beyond the stenosis at the MPD of the body. Although both the tumors were treated with radiotherapy and showed temporary reduction, the patient died 1 month later due to progression of the disease. While cases involving obstructive pancreatitis induced by extramedullary pancreatic metastasis of multiple myelomas are very rare, it is crucial that such patients are rapidly diagnosed and treated.


Asunto(s)
Inmunoglobulina D/metabolismo , Mieloma Múltiple/diagnóstico , Neoplasias Pancreáticas/secundario , Pancreatitis/patología , Colangiopancreatografia Retrógrada Endoscópica , Femenino , Humanos , Persona de Mediana Edad , Conductos Pancreáticos , Neoplasias Pancreáticas/diagnóstico , Stents
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...