RESUMEN
Diabetes mellitus is prevalent among women of reproductive age, and many women are left undiagnosed or untreated1. Gestational diabetes has profound and enduring effects on the long-term health of the offspring2,3. However, the link between pregestational diabetes and disease risk into adulthood in the next generation has not been sufficiently investigated. Here we show that pregestational hyperglycaemia renders the offspring more vulnerable to glucose intolerance. The expression of TET3 dioxygenase, responsible for 5-methylcytosine oxidation and DNA demethylation in the zygote4, is reduced in oocytes from a mouse model of hyperglycaemia (HG mice) and humans with diabetes. Insufficient demethylation by oocyte TET3 contributes to hypermethylation at the paternal alleles of several insulin secretion genes, including the glucokinase gene (Gck), that persists from zygote to adult, promoting impaired glucose homeostasis largely owing to the defect in glucose-stimulated insulin secretion. Consistent with these findings, mouse progenies derived from the oocytes of maternal heterozygous and homozygous Tet3 deletion display glucose intolerance and epigenetic abnormalities similar to those from the oocytes of HG mice. Moreover, the expression of exogenous Tet3 mRNA in oocytes from HG mice ameliorates the maternal effect in offspring. Thus, our observations suggest an environment-sensitive window in oocyte development that confers predisposition to glucose intolerance in the next generation through TET3 insufficiency rather than through a direct perturbation of the oocyte epigenome. This finding suggests a potential benefit of pre-conception interventions in mothers to protect the health of offspring.
Asunto(s)
Dioxigenasas , Intolerancia a la Glucosa , Hiperglucemia , Oocitos , Adulto , Animales , Dioxigenasas/metabolismo , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/genética , Hiperglucemia/metabolismo , Herencia Materna , Ratones , Oocitos/metabolismoRESUMEN
Stroke is the primary reason for death and disability worldwide, with few treatment strategies to date. Neurosteroids, which are natural molecules in the brain, have aroused great interest in the field of stroke. Neurosteroids are a kind of steroid that acts on the nervous system, and are synthesized in the mitochondria of neurons or glial cells using cholesterol or other steroidal precursors. Neurosteroids mainly include estrogen, progesterone (PROG), allopregnanolone, dehydroepiandrosterone (DHEA), and vitamin D (VD). Most of the preclinical studies have confirmed that neurosteroids can decrease the risk of stroke, and improve stroke outcomes. In the meantime, neurosteroids have been shown to have a positive therapeutic significance in some post-stroke complications, such as epilepsy, depression, anxiety, cardiac complications, movement disorders, and post-stroke pain. In this review, we report the historical background, modulatory mechanisms of neurosteroids in stroke and post-stroke complications, and emphasize on the application prospect of neurosteroids in stroke therapy.
Asunto(s)
Fármacos Neuroprotectores/farmacología , Neuroesteroides/farmacología , Accidente Cerebrovascular , Animales , HumanosRESUMEN
Over the past four decades, the global prevalence of obesity has increased rapidly in all age ranges. Emerging evidence suggests that paternal lifestyle and environmental exposure have a crucial role in the health of offspring. Therefore, the current study investigated the impact of paternal obesity on the metabolic profile of offspring in a male mouse model of obesity. Female offspring of obese fathers fed a high-fat diet (HFD) (60% kcal fat) showed hyperglycemia because of enhanced gluconeogenesis and elevated expression of phosphoenolpyruvate carboxykinase (PEPCK), which is a key enzyme involved in the regulation of gluconeogenesis. Methylation of the Igf2/H19 imprinting control region (ICR) was dysregulated in the liver of offspring, and the sperm, of HFD fathers, suggesting that epigenetic changes in germ cells contribute to this father-offspring transmission. In addition, we explored whether H19 might regulate hepatic gluconeogenesis. Our results showed that overexpression of H19 in Hepa1-6â¯cells enhanced the expression of PEPCK and gluconeogenesis by promoting nuclear retention of forkhead box O1 (FOXO1), which is involved in the transcriptional regulation of Pepck. Thus, the current study suggests that paternal exposure to HFD impairs the gluconeogenesis of offspring via altered Igf2/H19 DNA methylation.
Asunto(s)
Epigénesis Genética , Hiperglucemia/genética , Factor II del Crecimiento Similar a la Insulina/genética , Obesidad/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , ARN Largo no Codificante/genética , Animales , Línea Celular , Metilación de ADN , Dieta Alta en Grasa/efectos adversos , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Impresión Genómica , Gluconeogénesis/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hiperglucemia/patología , Patrón de Herencia , Factor II del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Procesamiento Proteico-Postraduccional , ARN Largo no Codificante/metabolismo , Espermatozoides/metabolismoRESUMEN
In current aging societies, diabetes mellitus and neurodegenerative diseases represented by Alzheimer's disease are highly prevalent among adults, especially the elderly all over the world. It is worth noting that a substantial body of evidence suggests diabetes contributes to accelerated neurodegenerative processes and the decline of cognition. Over the last few years, some studies have indicated neurovascular uncoupling and disrupted functional connectivity in the early stages of many neurodegenerative diseases, and the concept of the neurovascular unit (NVU) has been highlighted to understand the initiation and progression of neurodegenerative diseases recently. Considering that some components of the NVU are also demonstrated to have abnormal morphology and function under the condition of diabetes, we propose the hypothesis that diabetes may promote the onset and development of neurodegenerative diseases by impairing the integrity of the NVU, named Diabetes-NVU-Neurodegeneration Hypothesis. The existing body of literature supporting the hypothesis and elucidating the underlying mechanisms will be summarized in this review.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Diabetes Mellitus/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Acoplamiento Neurovascular/fisiología , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Barrera Hematoencefálica/patología , Encéfalo/patología , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Diabetes Mellitus/patología , Humanos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patologíaRESUMEN
Lung cancer is the leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) promotes lung cancer progression and metastasis, especially in lung adenocarcinoma. Sex determining region Y-box protein 5 (SOX5) is known to stimulate the progression of various cancers. Here, we used immunohistochemical analysis to reveal that SOX5 levels were increased in 90 lung adenocarcinoma patients. The high SOX5 expression in lung adenocarcinoma and non-tumor counterparts correlated with the patients' poor prognosis. Inhibiting SOX5 expression attenuated metastasis and progression in lung cancer cells, while over-expressing SOX5 accelerated lung adenocarcinoma progression and metastasis via EMT. An in vivo zebrafish xenograft cancer model also showed SOX5 knockdown was followed by reduced lung cancer cell proliferation and metastasis. Our results indicate SOX5 promotes lung adenocarcinoma tumorigenicity and can be a novel diagnosis and prognosis marker of the disease.