Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Oncol ; 2021: 5579373, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335759

RESUMEN

OBJECTIVE: To assess the diagnostic performance of clinically common single markers and combinations to distinguish nonmetastatic breast cancer and benign breast tumor. A predictive model with a better diagnostic ability for nonmetastatic breast cancer was established by using the diagnostic process. METHODS: A total of 222 patients with nonmetastatic breast cancer and 265 patients with benign breast disease were enrolled in this study. CEA, Ca 15-3, Ca 125, Ca 72-4, CYFRA 21-1, FERR, AFP, and NSE were measured by an electrochemiluminescent immunoenzymometric assay on the Elecsys system. There are four key steps for our diagnostic workflow, that is, feature selection, algorithm selection, parameter optimization, and outer test data was used to validate the optimal algorithm and markers. RESULTS: CEA, Ca 15-3, CYFRA 21-1, AFP, and FERR were selected using the t-test in our inner development set. The optimal algorithm among logical regression, decision tree, support vector machine, random forest, and gradient boost machine was selected by 10-fold cross-validation, and we found that random forest and logistic regression are the better classification. The outer test data was used to validate the best markers and classification. The random forest with CEA, Ca 15-3, CYFRA 21-1, AFP, and FERR showed the optimal combination for distinguishing breast cancer and benign breast disease. The AUC value was 0.888, the cut-off point was 0.484, and sensitivity and specificity were 78.9% and 90.1%. CONCLUSIONS: No single marker of these eight markers was good at identifying nonmetastatic breast cancer from benign tumors. But a diagnostic analysis workflow was established to develop a predictive model with better diagnostic capability for nonmetastatic breast cancer. This workflow is also applicable to the optimization of other disease markers and diagnostic models. The predictive model showed good diagnostic performance, and it could be gradually incorporated as a support method for the diagnosis of nonmetastatic breast cancer.

2.
Front Cell Dev Biol ; 9: 682269, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34235148

RESUMEN

The objective of this study was to identify potential biomarkers and possible metabolic pathways of malignant and benign thyroid nodules through lipidomics study. A total of 47 papillary thyroid carcinomas (PTC) and 33 control check (CK) were enrolled. Plasma samples were collected for UPLC-Q-TOF MS system detection, and then OPLS-DA model was used to identify differential metabolites. Based on classical statistical methods and machine learning, potential biomarkers were characterized and related metabolic pathways were identified. According to the metabolic spectrum, 13 metabolites were identified between PTC group and CK group, and a total of five metabolites were obtained after further screening. Its metabolic pathways were involved in glycerophospholipid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, Phosphatidylinositol signaling system and the metabolism of arachidonic acid metabolism. The metabolomics method based on PROTON nuclear magnetic resonance (NMR) had great potential for distinguishing normal subjects from PTC. GlcCer(d14:1/24:1), PE-NME (18:1/18:1), SM(d16:1/24:1), SM(d18:1/15:0), and SM(d18:1/16:1) can be used as potential serum markers for the diagnosis of PTC.

3.
Biotechnol Lett ; 39(11): 1657-1666, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28828718

RESUMEN

OBJECTIVE: To find new biomarkers for early diagnosis of breast cancer. RESULTS: 847 lipid species were identified from 78 plasma samples (37 breast cancer samples and 41 healthy controls) by ultra HPLC coupled with quadrupole time-of-flight tandem mass spectrometry. These include 321 glycerophospholipids (GPs), 265 glycerolipids (GLs), 91 sphingolipids (SPs), 77 fatty acyls (FAs), 68 sterol lipids (STs), 18 prenol lipids (PRs), 6 polyketides (PKs), and 1 saccharolipid (SL). Separation was observed from an orthogonal signal correction Partial Least Square Discrimination Analysis model. Based on this analysis, six differentiating lipids were identified: PC (20:2/20:5), PC (22:0/24:1), TG (12:0/14:1), and DG (18:1/18:2) had high levels, whereas PE (15:0/19:1) and N-palmitoyl proline had low levels in the breast cancer samples compared with the healthy controls. Furthermore, significant differences in metabolites were found among some clinical characteristics. CONCLUSIONS: Our results reveal that six specific lipids could serve as potential biomarkers for early diagnosis of breast cancer.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/patología , Lípidos/sangre , Adulto , Anciano , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/sangre , Neoplasias de la Mama/metabolismo , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Lípidos/análisis , Persona de Mediana Edad , Estadificación de Neoplasias , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...