Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(8): 2181-2184, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621106

RESUMEN

In order to address the high-power consummation issue of conventional multi-input and multi-output (MIMO) adaptive equalizer (AEQ) for short-reach coherent transmissions, several state-of-the-art low-complexity AEQs have been proposed. In our work, optimized adaptation algorithms for low-complexity real-valued (RV) AEQs with different structures are analyzed. Moreover, an approach to avoid introducing additional computational complexity due to the optimized adaptation process is presented here. The advantages of proposed optimized adaptation algorithms are experimentally demonstrated in a 25 Gbaud dual-polarization 16-quadrature-amplitude-modulation (DP-16QAM) back-to-back (BtB) intradyne system with an overall bandwidth of 14 GHz. Experimental results show that a similar performance as the conventional AEQ could be achieved by using proposed adaptation algorithms and reducing the number of multiplications with up to ∼65%.

2.
Sci Rep ; 14(1): 3175, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326642

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the major causes of liver-related morbidity and mortality globally. It ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) characterized by ballooning and hepatic inflammation. In the past few years, pyroptosis has been shown as a type of programmed cell death that triggers inflammation and plays a role in the development of NASH. However, the roles of pyroptosis-related genes (PRGs) in NASH remained unclear. In this study, we studied the expression level of pyroptosis-related genes (PRGs) in NASH and healthy controls, developed a diagnostic model of NASH based on PRGs and explored the pathological mechanisms associated with pyroptosis. We further compared immune status between NASH and healthy controls, analyzed immune status in different subtypes of NASH. We identified altogether twenty PRGs that were differentially expressed between NASH and normal liver tissues. Then, a novel diagnostic model consisting of seven PRGs including CASP3, ELANE, GZMA, CASP4, CASP9, IL6 and TP63 for NASH was constructed with an area under the ROC curve (AUC) of 0.978 (CI 0.965-0.99). Obvious variations in immune status between healthy controls and NASH cases were detected. Subsequently, the consensus clustering method based on differentially expressed PRGs was constructed to divide all NASH cases into two distinct pyroptosis subtypes with different immune and biological characteristics. Pyroptosis-related genes may play an important role in NASH and can provide new insights into the diagnosis and underlying mechanisms of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Piroptosis/genética , Inflamación/patología
3.
Sci Adv ; 10(3): eadf8666, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241376

RESUMEN

Fiber-optic distributed acoustic sensing (DAS) has proven to be a revolutionary technology for the detection of seismic and acoustic waves with ultralarge scale and ultrahigh sensitivity, and is widely used in oil/gas industry and intrusion monitoring. Nowadays, the single-frequency laser source in DAS becomes one of the bottlenecks limiting its advance. Here, we report a dual-comb-based coherently parallel DAS concept, enabling linear superposition of sensing signals scaling with the comb-line number to result in unprecedented sensitivity enhancement, straightforward fading suppression, and high-power Brillouin-free transmission that can extend the detection distance considerably. Leveraging 10-line comb pairs, a world-class detection limit of 560 fε/√Hz@1 kHz with 5 m spatial resolution is achieved. Such a combination of dual-comb metrology and DAS technology may open an era of extremely sensitive DAS at the fε/√Hz level, leading to the creation of next-generation distributed geophones and sonars.

4.
ACS Sens ; 9(2): 820-829, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38288631

RESUMEN

Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) is widely used as a highly sensitive gas sensing technology in various gas detection fields. For the on-axis coupling incidence scheme, the detection accuracy and stability are seriously affected by the cavity-mode noise, and therefore, stable operation inevitably requires external electronic mode-locking and sweeping devices, substantially increasing system complexity. To address this issue, we propose off-axis cavity-enhanced optical frequency comb spectroscopy from both theoretical and experimental aspects, which is applied to the detection of single- and dual-gas of carbon monoxide (CO) and carbon dioxide (CO2) in the near-infrared. An erbium-doped fiber frequency comb with a repetition frequency of ∼41.709 MHz is coupled into a resonant cavity with a length of ∼360 mm in an off-axis manner, exciting numerous high-order modes to effectively suppress cavity-mode noise. The performance of multiple machine learning models is compared for the inversion of a single/dual gas concentration. A few absorbance spectra are collected to build a sample data set, which is then utilized for model training and learning. The results demonstrate that the Particle Swarm Optimization Support Vector Machine (PSO-SVM) model achieves the highest predictive accuracy for gas concentration and is ultimately applied to the detection system. Based on Allan deviation, the detection limit for CO in single-gas detection can reach 8.247 parts per million by volume (ppmv) by averaging 87 spectra. Meanwhile, for simultaneous CO2/CO measurement with highly overlapping absorbance spectra, the LoD can be reduced to 13.196 and 4.658 ppmv, respectively. The proposed optical gas sensing technique indicates the potential for the development of a field-deployable and intelligent sensor system capable of simultaneous detection of multiple gases.


Asunto(s)
Dióxido de Carbono , Gases , Monóxido de Carbono , Aprendizaje Automático , Análisis Espectral
5.
Opt Express ; 31(16): 25545-25556, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710438

RESUMEN

A high-performance towing cable hydrophone array based on an improved ultra-sensitive fiber-optic distributed acoustic sensing system (uDAS) with picostrain sensitivity is demonstrated and tested in sea trial, for the first time. A new composite transducer is designed and optimized to enhance the acoustic pressure sensitivity significantly. A sea trial is carried out to test the performances of such a hydrophone array, including flow noise, underwater acoustic signal capture capacity, beamforming processing and localization of artificial source targets. The array exhibits high sensitivity and low noise floor. An average sensitivity of -129.23 dB re rad/µPa at frequencies from 10 Hz to 1500 Hz has been achieved. The localization at distances of 5 km and 10 km is realized, respectively, validating the excellent remote detection and positioning capability of the hydrophone system. The proposed towing cable system, with high sensitivity, simple structure and remote target localization ability, may pave a way for development of the next generation of high-performance light-weighting hydrophone arrays for towing applications.

6.
Opt Express ; 31(17): 27553-27565, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710828

RESUMEN

Self-homodyne detection (SHD) is a promising approach to realize high-capacity short-reach optical transmission systems with low cost and low power consumption. We experimentally demonstrate single-carrier net 800-Gb/s SHD transmission with low-cost ∼MHz linewidth distributed feedback (DFB) laser over 2 km, 10 km, 25 km, and 40 km single-mode fiber (SMF) using three different quadrature amplitude modulation (QAM) formats, including 80-Gbaud dual-polarization (DP) 64QAM, 100-Gbaud DP-32QAM, and 120-Gbaud DP-16QAM. Among them, net 800-Gb/s DP-64QAM SHD transmission over 25 km SMF using an uncooled DFB laser with a linewidth of 2.6 MHz is experimentally verified. The detailed experimental performance evaluation of net 800Gb/s SHD system is performed, in which various configurations are considered, such as different laser linewidths, three QAM formats, and different transmission distances. DFB lasers with linewidths of 1 MHz and 2.6 MHz lead to negligible penalty when compared to the same SHD system but using an external cavity laser (ECL) with a linewidth of 26kHz in back-to-back (BTB) case. 80-Gbaud DP-64QAM obtains the highest optical signal-to-noise ratio (OSNR) requirement and the highest bit-error rate (BER) floor but the best tolerance of chromatic dispersion (CD). 120-Gbaud DP-16QAM achieves the lowest OSNR requirement and the lowest BER floor but the worst tolerance of CD. The detailed experimental investigation is conducive to promote the practical application of SHD in different short-reach scenarios.

7.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762687

RESUMEN

Endogenous hydrogen sulfide (H2S) produced by cystathionine ß-synthase (CBS) and cystathionine-γ lyase (CSE) has emerged as a novel uterine vasodilator contributing to pregnancy-associated increases in uterine blood flow, which safeguard pregnancy health. Uterine artery (UA) H2S production is stimulated via exogenous estrogen replacement and is associated with elevated endogenous estrogens during pregnancy through the selective upregulation of CBS without altering CSE. However, how endogenous estrogens regulate uterine artery CBS expression in pregnancy is unknown. This study was conducted to test a hypothesis that endogenous estrogens selectively stimulate UA CBS expression via specific estrogen receptors (ER). Treatment with E2ß (0.01 to 100 nM) stimulated CBS but not CSE mRNA in organ cultures of fresh UA rings from both NP and P (gestational day 20, GD20) rats, with greater responses to all doses of E2ß tested in P vs. NP UA. ER antagonist ICI 182,780 (ICI, 1 µM) completely attenuated E2ß-stimulated CBS mRNA in both NP and P rat UA. Subcutaneous injection with ICI 182,780 (0.3 mg/rat) of GD19 P rats for 24 h significantly inhibited UA CBS but not mRNA expression, consistent with reduced endothelial and smooth muscle cell CBS (but not CSE) protein. ICI did not alter mesenteric and renal artery CBS and CSE mRNA. In addition, ICI decreased endothelial nitric oxide synthase mRNA in UA but not in mesenteric or renal arteries. Thus, pregnancy-augmented UA CBS/H2S production is mediated by the actions of endogenous estrogens via specific ER in pregnant rats.


Asunto(s)
Cistationina betasintasa , Fulvestrant , Sulfuro de Hidrógeno , Animales , Femenino , Embarazo , Ratas , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Estrógenos/metabolismo , Fulvestrant/farmacología , Sulfuro de Hidrógeno/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , Arteria Uterina/metabolismo
8.
Opt Express ; 31(5): 8785-8796, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859986

RESUMEN

A fast gas sensing scheme based on a non-dispersive frequency comb spectroscopy (ND-FCS) is proposed and experimentally demonstrated. Its capacity for multi-component gas measurement is experimentally investigated as well, by using the time-division-multiplexing (TDM) method to realize specific wavelength selection of the fiber laser optical frequency comb (OFC). A dual-channel optical fiber sensing scheme is established with a sensing path consisting of a multi-pass gas cell (MPGC), and a reference path with a calibrated signal to track the repetition frequency drift of the OFC for a real-time lock-in compensation and system stabilization. The long-term stability evaluation and the simultaneous dynamic monitoring are carried out, with the target gases of ammonia (NH3), carbon monoxide (CO) and carbon dioxide (CO2). The fast CO2 detection in human breath is also conducted. The experimental results show that at an integration time of 10 ms, the detection limits of the three species are evaluated to be 0.0048%, 0.1869% and 0.0467%, respectively. A low minimum detectable absorbance (MDA) down to 2.8 × 10-4 can be achieved and a dynamic response with millisecond time can be realized. Our proposed ND-FCS exhibits excellent gas sensing performance with merits of high sensitivity, fast response and long-term stability. It also shows great potential for multi-component gas monitoring in atmospheric monitoring applications.

9.
Opt Express ; 30(13): 23556-23567, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225032

RESUMEN

Optical solitons in mode-locked laser cavities with dispersion-nonlinearity interaction, delivers pulses of light that retain their shape. Due to the nature of discretely distributed dispersion and nonlinearity, optical solitons can emit Kelly-sidebands via the frequency coupling of soliton and dispersive waves. In this paper, we generate a high-energy femtosecond laser comb, by using the intracavity Kelly radiations and 3rd order nonlinearities. By increasing the intracavity power, the soliton envelop and the Kelly-sidebands merge together via four-wave-mixing, forming a super-continuum spectrum, obtaining 3.18 nJ pulse energy. A supercontinuum span covering from 1100 nm to 2300 nm for further self-referenced f-2f stabilization can be directly achieved by using an amplification-free external supercontinuum technique. Our finding not only demonstrates a non-trivial frequency-time evolution based on 'erbium + χ(3)' nonlinear gains, but also offers a new opportunity to develop practically compact fiber frequency combs for frequency metrology or spectroscopy.

10.
Front Endocrinol (Lausanne) ; 13: 887843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655797

RESUMEN

High-salt diet (HSD) is associated with dysregulated metabolism and metabolic disorders. Although previous studies have indicated its effect on metabolic tissues, the involving molecular mechanisms are not quite understood. In the present study, we provided a comprehensive transcriptome analysis on multiple metabolic tissues of HSD-fed mouse model by RNA sequencing. We observed that several genes associated with de novo lipogenesis and cholesterol biosynthesis were significantly downregulated in white adipose tissue and liver tissue of HSD mice group, such as Fasn, Scd1, Acaca, and Thrsp. Furthermore, combined with secretome datasets, our results further demonstrated that HSD could alter expression levels of organokines in metabolic tissues, for example, Tsk and Manf, in liver tissue and, thus, possibly mediate cross-talk between different metabolic tissues. Our study provided new insight about molecular signatures of HSD on multiple metabolic tissues.


Asunto(s)
Dieta , Enfermedades Metabólicas , Animales , Perfilación de la Expresión Génica , Lipogénesis , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Ratones , Factores de Crecimiento Nervioso
11.
Mediators Inflamm ; 2022: 1707122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757105

RESUMEN

Microglia in the penumbra shifted from M2 to M1 phenotype between 3 and 5 days after cerebral ischemia-reperfusion, which promoted local inflammation and injury. Shaoyao-Gancao Decoction (SGD) has been found to result in a significant upregulation of IL-13 in the penumbra, which has been shown to induce polarization of M2 microglia. There was thus a hypothesis that SGD could exert an anti-inflammatory and neuroprotective effect by activating IL-13 to induce microglia polarization towards M2 phenotype, and the purpose of this study was to explore the influence of SGD on microglia phenotype switching and its possible mechanism. Rats who received middle cerebral artery occlusion surgery (MCAO) were treated with SGD for 3 or 6 days, to investigate the therapeutic effect and the underlying mechanism of SGD for cerebral ischemia-reperfusion injury (CI/RP). The results indicated that SGD improved neurobehavioral scores and reduced apoptosis. Furthermore, SGD significantly decreased M1 microglia and M1-like markers, but increased M2 microglia and M2 markers. Moreover, higher levels of IL-13 and ratios of p-JAK2/JAK2 and p-STAT6/STAT6 were found in the SGD group compared to the MCAO. In conclusion, it was verified that SGD prevented injury by driving microglia phenotypic switching from M1 to M2, probably via IL-13 and its downstream JAK2-STAT6 pathway. Given that no further validation tests were included in this study, it is necessary to conduct more experiments to confirm the reliability of the above results.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Glycyrrhiza , Microglía , Daño por Reperfusión , Factor de Transcripción STAT6 , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Medicamentos Herbarios Chinos/farmacología , Glycyrrhiza/química , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Interleucina-13/metabolismo , Janus Quinasa 2/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratas , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Reproducibilidad de los Resultados , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Nat Commun ; 12(1): 6716, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795222

RESUMEN

Soliton frequency combs generate equally-distant frequencies, offering a powerful tool for fast and accurate measurements over broad spectral ranges. The generation of solitons in microresonators can further improve the compactness of comb sources. However the geometry and the material's inertness of pristine microresonators limit their potential in applications such as gas molecule detection. Here, we realize a two-dimensional-material functionalized microcomb sensor by asymmetrically depositing graphene in an over-modal microsphere. By using one single pump, spectrally trapped Stokes solitons belonging to distinct transverse mode families are co-generated in one single device. Such Stokes solitons with locked repetition rate but different offsets produce ultrasensitive beat notes in the electrical domain, offering unique advantages for selective and individual gas molecule detection. Moreover, the stable nature of the solitons enables us to trace the frequency shift of the dual-soliton beat-note with uncertainty <0.2 Hz and to achieve real-time individual gas molecule detection in vacuum, via an optoelectronic heterodyne detection scheme. This combination of atomically thin materials and microcombs shows the potential for compact photonic sensing with high performances and offers insights toward the design of versatile functionalized microcavity photonic devices.

13.
Front Cardiovasc Med ; 8: 735485, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692788

RESUMEN

Background: Exercise has been proven to be an effective therapy for stroke by reducing the microglia-initiated proinflammatory response. Few studies, however, have focused on the phenotypic changes in microglia cells caused by exercise training. The present study was designed to evaluate the influence of treadmill exercise on microglia polarization and the molecular mechanisms involved. Methods: Male Sprague-Dawley rats were randomly assigned into 3 groups: sham, MCAO and exercise. The middle cerebral artery occlusion (MCAO) and exercise groups received MCAO surgery and the sham group a sham operation. The exercise group also underwent treadmill exercise after the surgery. These groups were studied after 4 and 7 days to evaluate behavioral performance using a modified neurological severity score (mNSS), and infarct conditions using 2,3,5-triphenyl tetrazolium chloride. Quantitative real-time polymerase chain reaction (qRT-PCR) and Luminex was employed to determine the expressions of markers of microglia phenotypes. Western blotting was employed to identify the phosphorylation levels of Janus kinase1 (JAK1) and signal transducer and activator of transcription 6 (STAT6). Immunofluorescence was conducted to identify microglia phenotypes. Results: Treadmill exercise was found to improve neurobehavioral outcomes, mainly motor and balance functions, reduce infarct volumes and significantly increase interleukin-4 (IL-4) expression. In addition, treadmill exercise inhibited M1 microglia and promoted M2 microglia activation as evidenced by decreased M1 and increased M2 markers. Furthermore, an obvious increase in p-JAK1 and p-STAT6 was observed in the exercise group. Conclusions: Treadmill exercise ameliorates cerebral ischemia-reperfusion injury by enhancing IL-4 expression to promote M2 microglia polarization, possibly via the JAK1-STAT6 pathway.

14.
ACS Sens ; 5(12): 3939-3948, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33251796

RESUMEN

The fast and sensitive detection of methanol gas using cost-effective sensors in the industry is a significant issue to be addressed. Herein, a polyindole (PIn)-deposited substrate integrated waveguide (SIW) has been introduced to perform quantitative and qualitative methanol gas sensing with quick response and recovery time at room temperature. First, PIn is synthesized and deposited in the microwell etched at the intensified electric field region of the microwave-based cavity resonator, which gives a sensing response through variation of PIn's high-frequency conductivity and dielectric property caused by the adsorption and desorption of methanol gas. Second, an enhanced filling factor and high Q factor have been attained using the proposed microwell etched SIW structure, which exhibits high sensitivity in terms of frequency shift (3.33 kHz/ppm), amplitude shift (0.005 dB/ppm), bandwidth broadening (3.66 kHz/ppm), and loaded Q factor (10.60 Q value/ppm). Third, the gas measurement results reveal excellent long-term stability with a relative standard deviation (RSD) of 0.02% for 7 days, excellent repeatability with an RSD of 0.004%, and desired response and recovery time of 95 and 120 s, respectively. The results indicate that the proposed microwave sensor has great potential to achieve high sensitivity and fast response toward methanol gas molecules at room temperature.


Asunto(s)
Metanol , Microondas , Adsorción , Conductividad Eléctrica , Electricidad
15.
Sensors (Basel) ; 20(14)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698465

RESUMEN

This article presents a high-sensitivity, quantified, linear, and mediator-free resonator-based microwave biosensor for glucose sensing application. The proposed biosensor comprises an air-bridge-type asymmetrical differential inductor (L) and a center-loaded circular finger-based inter-digital capacitor (C) fabricated on Gallium Arsenide (GaAs) substrate using advanced micro-fabrication technology. The intertwined asymmetrical differential inductor is used to achieve a high inductance value with a suitable Q-factor, and the centralized inter-digital capacitor is introduced to generate an intensified electric field. The designed microwave sensor is optimized to operate at a low resonating frequency that increases the electric field penetration depth and interaction area in the glucose sample. The microwave biosensor is tested with different glucose concentrations (0.3-5 mg/ml), under different ambient temperatures (10-50 °C). The involvement of advanced micro-fabrication technology effectively miniaturized the microwave biosensor (0.006λ0 × 0.005λ0) and enhanced its filling factor. The proposed microwave biosensor demonstrates a high sensitivity of 117.5 MHz/mgmL-1 with a linear response (r2 = 0.9987), good amplitude variation of 0.49 dB/mgmL-1 with a linear response (r2 = 0.9954), and maximum reproducibility of 0.78% at 2 mg/mL. Additionally, mathematical modelling was performed to estimate the dielectric value of the frequency-dependent glucose sample. The measured and analyzed results indicate that the proposed biosensor is suitable for real-time blood glucose detection measurements.


Asunto(s)
Técnicas Biosensibles , Glucemia/análisis , Microondas , Electricidad , Dedos , Humanos , Reproducibilidad de los Resultados
16.
Hum Gene Ther ; 30(9): 1079-1092, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31144528

RESUMEN

The application of CRISPR/Cas9 has opened a new era in gene therapy, making it possible to correct mutated genomes in vivo. Exon replacement can correct many mutations and has potential clinical value. In this study, we used a lentivirus-delivered transgene to obtain transgenic mice in which Cas9 and green fluorescent protein (GFP) were driven by the hTBG promoter and were specifically expressed in the liver. In Cas9-positive mice, only ∼11.6% of hepatocytes were GFP positive. The newborn Cas9-positive F1 mice were injected via the temporal vein with rAAV carrying a modified homologous replacement sequence for exon 8 of Atp7b and a pair of single-strand guide RNAs targeting the introns surrounding exon 8. When the Cas9-positive hepatocytes were sorted and analyzed by PCR and next-generation deep sequencing with different labels, ∼16.34 ± 4.02% to 19.37 ± 6.50% of the analyzed copies of exon 8 were replaced by the donor template in the genome of GFP-positive hepatocytes, that is, 1.81 ± 0.29% to 2.09 ± 0.54% replacement occurred in all liver genomes. However, when rAAV carrying a modified homologous replacement sequence was injected into the adult spCas9 mice, a double-cut deletion ratio of up to 99%, only about 1.10-1.13% of the exon 8 replacement rate was detected in Cas9-positive hepatocytes. This study is the first to achieve exon replacement via CRISPR/Cas9, which will benefit research on CRISPR/Cas9 technology for gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , ATPasas Transportadoras de Cobre/genética , Exones , Edición Génica , Animales , Línea Celular , Dependovirus/genética , Orden Génico , Marcación de Gen , Genes Reporteros , Ingeniería Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Hepatocitos/metabolismo , Lentivirus/genética , Ratones , Ratones Transgénicos , Mutación , ARN Guía de Kinetoplastida , Análisis de Secuencia de ADN , Transducción Genética
17.
EBioMedicine ; 42: 494-503, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30948354

RESUMEN

BACKGROUND: Many studies have demonstrated that microRNAs, a class of small and non-coding RNA molecules, play an important role in the regulation of glucose and lipid homeostasis. In the present study, we sought to investigate the function of miR-592 in the development of obesity-associated metabolic disorders, including hyperglycemia andinsulin resistance. METHODS: The expression levels of miR-592 were measured in the liver of obese mice and humans by quantitative reverse transcription PCR. Loss- and gain-of function experiments were employed to explore the metabolic function of miR-592 using locked nucleic acids and adenovirus in lean and obese mice, respectively. The molecular target of miR-592 was determined by western blotting and luciferase reporter assays. FINDINGS: We found a significant decreased expression of miR-592 in the liver of obese mice and humans. Inhibition of miR-592 led to elevated blood glucose levels, enhanced gluconeogenesis and reduced insulin sensitivity in lean mice. In contrast, adenovirus-mediated overexpression of hepatic miR-592 improved metabolic disorders in obese mice. Mechanistically, we found that the transcription factor forkhead box O1 (FOXO1) is a direct target gene of miR-592 to mediate its metabolic functions. miR-592 was able to inhibit the mRNA and protein expression of FOXO1 by binding to its 3'-untranslated region. INTERPRETATIONS: Our findings demonstrate that obesity-associated down-regulation of miR-592 plays an important role in the progression of metabolic diseases. Restoration of hepatic miR-592 could improve glucose and lipid metabolism in obese mice. FUND: This work is supported by the National Key Research and Development Program of China (No. 2016YFC1304805 to Dr. Chen), Natural Science Foundation of China (No. 81771574 to Dr. Wu), Shanghai Science Foundation (No. 18ZR1437800 to Dr. Li), Science and Technology Commission of Shanghai Municipality (Nos.18dz2304400 and 15,411,970,700 to Dr. Yang).


Asunto(s)
Hiperglucemia/sangre , Hiperglucemia/genética , Resistencia a la Insulina/genética , MicroARNs/genética , Obesidad/genética , Obesidad/metabolismo , Regiones no Traducidas 3' , Animales , Biomarcadores , Modelos Animales de Enfermedad , Proteína Forkhead Box O1/genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Ratones , Obesidad/sangre , ARN Interferente Pequeño/genética
18.
Sensors (Basel) ; 19(2)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646497

RESUMEN

An ethanol vapor sensor based on a microfiber with a quantum-dot (QD) gel coating is proposed and demonstrated. The QD gel was made from UV glue as the gel matrix and CdSe/ZnS QDs with a concentration of 1 mg/mL. The drawing and coating processes were conducted by using a simple and low-cost system developed for this study. Bending, ethanol sensing, temperature response, and time response tests were carried out, respectively. The experimental results showed that the fabricated sensor had a high sensitivity of -3.3%/ppm, a very low temperature cross-sensitivity of 0.17 ppm/°C, and a fast response time of 1.1 s. The easily fabricated robust structure and the excellent sensing performance render the sensor a promising platform for real ethanol sensing applications.

19.
Neural Regen Res ; 13(12): 2129-2133, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30323141

RESUMEN

Baicalin, a flavonoid compound from the root of the herb Scutellaria baicalensis Georgi, has been widely used to treat patients with inflammatory disease. The aim of this study was to assess the efficacy of baicalin in a rat model of focal cerebral ischemia. Adult male Sprague-Dawley rat models of cerebral artery occlusion were established and then randomly and equally divided into three groups: ischemia (cerebral ischemia and reperfusion), valproic acid (cerebral ischemia and reperfusion + three intraperitoneal injections of valproic acid; positive control), and baicalin (cerebral ischemia and reperfusion + intraperitoneal injection of baicalin for 21 days). Neurological deficits were assessed using the postural reflex test and forelimb placing test at 3, 7, 14, and 21 days after ischemia. Rat cerebral infarct volume was measured using 2,3,5-triphenyltetrazolium chloride (TTC) staining method. Pathological change of ischemic brain tissue was assessed using hematoxylin-eosin staining. In the baicalin group, rat neurological function was obviously improved, cerebral infarct volume was obviously reduced, and the pathological impairment of ischemic brain tissue was obviously alleviated compared to the ischemia group. Cerebral infarct volume was similar in the valproic acid and baicalin groups. These findings suggest that baicalin has a neuroprotective effect on cerebral ischemia.

20.
Opt Express ; 26(17): 21656-21663, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130868

RESUMEN

A novel optical fiber liquid level sensor based on a hollow core Bragg fiber (HCBF) was proposed and demonstrated. The HCBF was first designed and successfully fabricated with periodic transmission band in the spectrum and a transmission loss of ~3.48 dB/cm. An inline optical fiber liquid-level sensor was fabricated by simply sandwiching a piece of HCBF between two single mode fibers. The sensing performance was experimentally tested. A linear liquid-level sensitivity of ~1.1 dB/mm, and fast response time less than 3s was obtained by the intensity demodulation measurement. The temperature and refractive index cross-sensitivities were also investigated. The experimental results indicate that our proposed structure has tiny temperature and RI dependence, which makes it a promising liquid level sensing platform for different liquids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...