Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros












Intervalo de año de publicación
1.
Br J Nutr ; : 1-34, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826079

RESUMEN

This study was conducted to investigate whether methionyl-tRNA synthetase (MetRS) is a mediator of Met-induced crop milk protein synthesis via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) signalling pathway in breeding pigeons. In Experiment 1, a total of 216 pairs of breeding pigeons were divided into 3 groups (control, Met-deficient, and Met-rescue groups). In Experiments 2 and 3, forty pairs of breeding pigeons from each experiment were allocated into 4 groups. The 2nd experiment included a control group and 3 MetRS inhibitor (REP8839) groups. The 3rd experiment included a Met-deficient group, Met-sufficient group, REP8839 + Met-deficient group, and REP8839 + Met-sufficient group. Experiment 1 showed that Met supplementation increased crop development, crop milk protein synthesis, the protein expression of MetRS and JAK2/STAT5 signalling pathway, and improved squab growth. Experiment 2 showed that crop development, crop milk protein synthesis, and the protein expression of MetRS and the JAK2/STAT5 signalling pathway were decreased, and squab growth was inhibited by the injection of 1.0 mg/kg BW REP8839, which was the selected dose for the 3rd experiment. These results showed that Met supplementation increased crop development, crop milk protein synthesis, and the expression of MetRS and JAK2/STAT5 signalling pathway and rescued squab growth after the injection of REP8839. Moreover, the Co-IP results showed that there was an interaction between MetRS and JAK2. Taken together, these findings indicate that MetRS mediates Met-induced crop milk protein synthesis via the JAK2/STAT5 signalling pathway, resulting in improved squab growth in breeding pigeons.

2.
J Agric Food Chem ; 72(18): 10366-10375, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651967

RESUMEN

Intestinal stem cells (ISCs) sustain epithelial renewal by dynamically altering behaviors of proliferation and differentiation in response to various nutrition and stress inputs. However, how ISCs integrate bioactive substance morin cues to protect against heat-stable enterotoxin b (STb) produced by Escherichia coli remains an uncertain question with implications for treating bacterial diarrhea. Our recent work showed that oral mulberry leaf-derived morin improved the growth performance in STb-challenged mice. Furthermore, morin supplementation reinstated the impaired small-intestinal epithelial structure and barrier function by stimulating ISC proliferation and differentiation as well as supporting intestinal organoid expansion ex vivo. Importantly, the Wnt/ß-catenin pathway, an ISC fate commitment signal, was reactivated by morin to restore the jejunal crypt-villus architecture in response to STb stimulation. Mechanically, the extracellular morin-initiated ß-catenin axis is dependent or partially dependent on the Wnt membrane receptor Frizzled7 (FZD7). Our data reveal an unexpected role of leaf-derived morin, which represents molecular signaling targeting the FZD7 platform instrumental for controlling ISC regeneration upon STb injury.


Asunto(s)
Antioxidantes , Toxinas Bacterianas , Enterotoxinas , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Yeyuno , Morus , Extractos Vegetales , Ratones , Morus/química , Hojas de la Planta/química , Vía de Señalización Wnt , Células Madre/efectos de los fármacos , Células Madre/microbiología , Células Madre/patología , Proteínas de Escherichia coli/metabolismo , Técnicas In Vitro , Extractos Vegetales/farmacología , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/microbiología , Yeyuno/patología , Regeneración , Toxinas Bacterianas/aislamiento & purificación , Enterotoxinas/aislamiento & purificación , Infecciones por Escherichia coli/tratamiento farmacológico , Antioxidantes/farmacología
3.
Cells ; 13(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38607088

RESUMEN

Muscle regeneration, representing an essential homeostatic process, relies mainly on the myogenic progress of resident satellite cells, and it is modulated by multiple physical and nutritional factors. Here, we investigated how myogenic differentiation-related factors and pathways respond to the first limiting amino acid lysine (Lys) in the fast and slow muscles, and their satellite cells (SCs), of swine. Thirty 28-day-old weaned piglets with similar body weights were subjected to three diet regimens: control group (d 0-28: 1.31% Lys, n = 12), Lys-deficient group (d 0-28: 0.83% Lys, n = 12), and Lys rescue group (d 0-14: 0.83% Lys; d 15-28: 1.31% Lys, n = 6). Pigs on d 15 and 29 were selectively slaughtered for muscular parameters evaluation. Satellite cells isolated from fast (semimembranosus) and slow (semitendinosus) muscles were also selected to investigate differentiation ability variations. We found Lys deficiency significantly hindered muscle development in both fast and slow muscles via the distinct manipulation of myogenic regulatory factors and the Wnt/Ca2+ pathway. In the SC model, Lys deficiency suppressed the Wnt/Ca2+ pathways and myosin heavy chain, myogenin, and myogenic regulatory factor 4 in slow muscle SCs but stimulated them in fast muscle SCs. When sufficient Lys was attained, the fast muscle-derived SCs Wnt/Ca2+ pathway (protein kinase C, calcineurin, calcium/calmodulin-dependent protein kinase II, and nuclear factor of activated T cells 1) was repressed, while the Wnt/Ca2+ pathway of its counterpart was stimulated to further the myogenic differentiation. Lys potentially manipulates the differentiation of porcine slow and fast muscle myofibers via the Wnt/Ca2+ pathway in opposite trends.


Asunto(s)
Lisina , Factores Reguladores Miogénicos , Animales , Porcinos , Factores Reguladores Miogénicos/metabolismo , Lisina/metabolismo , Músculo Esquelético/metabolismo , Diferenciación Celular , Cadenas Pesadas de Miosina/metabolismo
4.
Phytomedicine ; 128: 155363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493715

RESUMEN

BACKGROUND: Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE: This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN: The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 µM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS: The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/ß-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS: The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/ß-catenin signaling. The fact that Wnt/ß-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION: Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/ß-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.


Asunto(s)
Alcaloides , Pollos , Coccidiosis , Eimeria , Matrinas , Enfermedades de las Aves de Corral , Quinolizinas , Vía de Señalización Wnt , Animales , Quinolizinas/farmacología , Alcaloides/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Eimeria/efectos de los fármacos , Coccidiosis/tratamiento farmacológico , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/parasitología , Células Madre/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/parasitología
5.
World J Clin Cases ; 12(1): 163-168, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38292635

RESUMEN

BACKGROUND: Endophthalmitis occurring in silicone oil-filled eyes is a very rare occurrence, with reported incidence rates ranging between 0.07% and 0.039%. Traditional methods of management of infectious endophthalmitis include the removal of silicone oil, washout of the vitreous cavity, administration of intravitreal antibiotics, and re-injection of silicone oil. CASE SUMMARY: Herein, we report the case of a 39-year-old man with unilateral endophthalmitis after pars plana vitrectomy and silicone oil tamponade. Intravitreal injections of full-dose antibiotics and anterior chamber washout were used to treat the patient. No signs of retinal toxicity were observed during the follow-up period. CONCLUSION: Intravitreal full-dose antibiotic injections and anterior chamber washout are promising alternatives to traditional therapies for endophthalmitis in silicone oil-filled eyes.

6.
J Agric Food Chem ; 71(35): 13079-13091, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37632443

RESUMEN

l-Malic acid (l-MA) contributes to energy metabolism and nutrient digestion, which is an alternative to antibiotics for livestock; however, it is not clear whether l-MA can replace antibiotics to promote intestinal development in chicks. To investigate the effects of l-MA on intestinal stem cells (ISCs) driving epithelial renewal, we employed in vivo chick feeding experiments, chick intestinal organoid (IO) models, and in vitro chick intestinal epithelial cell models. The results showed that the feed conversion rate and diarrhea scores were decreased with improved jejunal morphology and barrier function in the 0.5% l-MA group. l-MA promoted the proliferation and differentiation of ISCs, inhibited the cell apoptosis, increased the IO formation efficiency, surface area, budding efficiency, and number of buds, suggesting that l-MA promoted the expansion of ISCs. Furthermore, l-MA treatment dramatically upregulated the Wnt/ß-catenin signaling pathway in the jejunum. Importantly, Wnt transmembrane receptor Frizzled7 (FZD7) mRNA abundance was increased in response to dietary 0.5% l-MA. In addition, molecular docking analysis using Autodock software and isothermal titration calorimetry revealed that l-MA binds to Lys91 of FZD7 with high affinity, indicating a spontaneous interaction. The chick intestinal epithelial cells treated with 10 µM l-MA significantly increased cell viability, and the Wnt/ß-catenin signaling pathway was activated, but l-MA failed to upregulate the Wnt/ß-catenin signaling when treated with the FZD7-specific inhibitor Fz7-21 in chick intestinal epithelial cells, indicating that FZD7 is indispensable for l-MA activation of the Wnt/ß-catenin signaling. Collectively, l-MA stimulated ß-catenin signaling by targeting transmembrane receptor FZD7, which promoted ISC expansion and inhibited cell apoptosis to accelerate intestinal epithelial renewal in chicks.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Simulación del Acoplamiento Molecular , Antibacterianos , Pollos
7.
BMC Ophthalmol ; 23(1): 331, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474921

RESUMEN

BACKGROUND: To evaluate the effect of room air and sulfur hexafluoride (SF6) gas in idiopathic macular hole(MH)surgery. METHODS: Retrospective, interventional, and comparative study. 238 eyes with the idiopathic macular hole that underwent pars plana vitrectomy, internal limiting membrane peeling, fluid-air exchange, and 20% SF6 (SF6 group:125 eyes) or room air tamponade (air group: 113 eyes) were reviewed. The primary outcome measure was the closure rate of primary surgery. RESULTS: The baseline characteristics of the SF6 group and air group were comparable except for the hole size (479.90 ± 204.48 vs. 429.38 ± 174.63 µm, P = 0.043). The anatomical closure rate was 92.8% (116 / 125) with the SF6 group and 76.1% (86 / 113) with the air group (P < 0.001). A cut-off value of MH size to predict primary anatomical closure was 520 µm, which is based on the lower limit of 95% confidential interval of the MH size among the unclosed patients in the air group. There was no significant difference in anatomical closure rates between SF6 and air group (98.7% vs. 91.9%, P = 0.051) for MH ≤ 520 µm, whereas a significantly lower anatomical closure rate was shown in the air group than SF6 group (46.2% vs. 84.0%, P < 0.001) for MH > 520 µm. CONCLUSION: SF6 exhibited more effectiveness than air to achieve a good anatomical outcome for its longer tamponade when MH > 520 µm.


Asunto(s)
Perforaciones de la Retina , Humanos , Perforaciones de la Retina/cirugía , Estudios Retrospectivos , Hexafluoruro de Azufre , Vitrectomía , Agudeza Visual
8.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1213-1221, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475547

RESUMEN

Roof plate-specific spondin 1 (R-spondin1, RSPO1) is a Wnt/ß-catenin signaling pathway activator that binds with Wnt ligands to stimulate the Wnt/ß-catenin signaling pathway, which is key to hair regeneration. However, it is not clear whether recombinant RSPO1 (rRSPO1) affects hair regeneration. Here, we treat C57BL/6 male mice with rRSPO1 and investigate the expression of the Wnt/ß-catenin signaling pathway and the activation of hair follicle stem cells in the dorsal skin. The mouse skin color score and hair-covered area are determined to describe hair growth, and the skin samples are subjected to H&E staining, western blot analysis and immunofluorescence staining to evaluate hair follicle development and the expressions of Wnt/ß-catenin signaling pathway-related proteins. We find that rRSPO1 activates mouse hair follicle stem cells (mHFSCs) and accelerates hair regeneration. rRSPO1 increases the hair-covered area, the number of hair follicles, and the hair follicle diameter and length. Moreover, rRSPO1 enhances the activity of Wnt/ß-catenin signaling pathway-related proteins and the expressions of HFSC markers, as well as mHFSC viability. These results indicate that subcutaneous injection of rRSPO1 can improve hair follicle development by activating the Wnt/ß-catenin signaling pathway, thereby promoting hair regeneration. This study demonstrates that rRSPO1 has the potential to treat hair loss by activating the Wnt/ß-catenin signaling pathway.


Asunto(s)
Cabello , Vía de Señalización Wnt , Ratones , Masculino , Animales , Ratones Endogámicos C57BL , Cabello/metabolismo , Folículo Piloso/metabolismo , Piel/metabolismo , beta Catenina/metabolismo
9.
Poult Sci ; 102(6): 102681, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37098298

RESUMEN

Pigeons are important commercial poultry in addition to being ornamental birds. In 2021, more than 111 million pairs of breeding pigeons were kept in stock and 1.6 billion squabs were slaughtered for meat in China. However, in many countries, pigeons are not domestic birds; thus, it is necessary to elucidate the factors involved in their growth and feeding strategy due to their economic importance. Pigeons are altricial birds, so feedstuffs cannot be digested by squabs, which instead are fed a mediator named pigeon crop milk. During lactation, breeding pigeons (both female and male) ingest diets and generate crop milk to feed squabs. Thus, research on squab growth is more complex than that on chicken and other poultry. To date, research on the measurement of crop milk composition and estimation of the factors affecting its production has not ceased, and these results are worth reviewing to guide production. Moreover, some studies have focused on the formation mechanism of crop milk, reporting that the synthesis of crop milk is controlled by prolactin and insulin-activated pathways. Furthermore, the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) pathway, target of rapamycin (TOR) pathway and AMP-activated protein kinase (AMPK) pathway were also reported to be involved in crop milk synthesis. Therefore, this review focuses on the chemical composition of pigeon crop milk and factors affecting its production during lactation. This work explores novel mechanisms and provides a theoretical reference for improving production in the pigeon industry, including for racing, ornamental purposes, and production of meat products.


Asunto(s)
Columbidae , Leche , Femenino , Masculino , Animales , Columbidae/fisiología , Pollos , Lactancia , Transducción de Señal
10.
J Sci Food Agric ; 103(9): 4649-4659, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36930725

RESUMEN

BACKGROUND: Probiotics comprise effective feed additives that can replace antibiotics in animal livestock production. However, mono-strain probiotics appear less effective because of their instability. Therefore, the present study aimed to investigate dietary supplementation with compound probiotics (CPP) on growth performance, diarrhea rate and intestinal mucosal barrier, as well as the possible molecular mechanism, in chicks. In total, 360 1-day-old chicks of the Hy-Line Brown Chicks were randomly divided into the control group (CON, basal diet), chlortetracycline group (500 mg kg-1 CTC) and compound probiotics group (1000 mg kg-1 CPP, consisting of Bacillus subtilis, Bacillus licheniformis, Enterococcus faecium and yeast). The experiment period was 56 days. RESULTS: The results showed that, in comparison with the CON group, CPP significantly increased the average daily feed intake and average daily gain of chicks and reduced diarrhea (P < 0.05). The probiotic group exhibited increased immune organ (i.e. spleen and thymus) mass and increased levels of serum immunoglobulin (Ig)A, IgM and IgG (P < 0.05) compared to the CTC group. In addition, the jejunal mass and morphology were improved in the probiotic group (P < 0.05). Moreover, CPP reinforced jejunal barrier function, as indicated by increased transepithelial electrical resistance, protein expression of occludin and claudin-1, and diamine oxidase levels in the jejunum (P < 0.05). Likewise, enhanced fluorescence signals of proliferating cell nuclear antigen-labeled mitotic cells and villin-labeled absorptive cells in the jejunum (P < 0.05) suggested that CPP promoted intestinal stem cells activity. Mechanistically, the Wnt/ß-catenin signaling pathway, including ß-catenin, TCF4, c-Myc, cyclin D1 and Lgr5, was amplified in the jejunum by CPP addition (P < 0.05). CONCLUSION: The present study demonstrated that dietary supplementation with CPP reinforced the jejunal epithelial integrity by activating Wnt/ß-catenin signaling and enhanced immune function in chicks. © 2023 Society of Chemical Industry.


Asunto(s)
Probióticos , beta Catenina , Animales , beta Catenina/genética , Vía de Señalización Wnt , Dieta/veterinaria , Diarrea/prevención & control , Diarrea/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Pollos
11.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119431, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36632926

RESUMEN

During heat stress (HS), the intestinal epithelium suffers damage due to imbalance of tissue homeostasis. However, the specific mechanism by which intestinal stem cells (ISCs) migrate and differentiate along the crypt-villus axis to heal lesions upon insult is unclear. In our study, C57BL/6 mice and IPEC-J2 cells were subjected to normal ambient conditions (25 °C for 7 days in vivo and 37 °C for 18 h in vitro) or 41 °C. The results showed that HS impaired intestinal morphology and barrier function. The numbers of ISCs (SOX9+ cells), mitotic cells (PCNA+ cells), and differentiated cells (Paneth cells marked by lysozyme, absorptive cells marked by Villin, goblet cells marked by Mucin2, enteroendocrine cells marked by Chromogranin A, and tuft cells marked by DCAMKL1) were reduced under high temperature. Importantly, BrdU incorporation confirmed the decreased migration ability of jejunal epithelial cells exposed to 41 °C. Furthermore, intestinal organoids (IOs) expanded from jejunal crypt cells in the HS group exhibited greater growth disadvantages. Mechanistically, the occurrence of these phenotypes was accompanied by FAK/paxillin/F-actin signaling disruption in the jejunum. The fact that the FAK agonist ZINC40099027 reversed the HS-triggered inhibition of IPEC-J2 cell differentiation and migration further confirmed the dominant role of FAK in response to high-temperature conditions. Overall, the present investigation is the first to reveal a major role of FAK/paxillin/F-actin signaling in HS-induced ISC migration and differentiation along the crypt-villus axis, which indicates a new therapeutic target for intestinal epithelial regeneration after heat injuries.


Asunto(s)
Actinas , Mucosa Intestinal , Animales , Ratones , Actinas/metabolismo , Diferenciación Celular , Movimiento Celular , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Paxillin/metabolismo , Células Madre/metabolismo
12.
Poult Sci ; 102(3): 102478, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36696763

RESUMEN

This study aimed to investigate the effects of dietary supplementation with fermented soybean meal (FSM) or fermented miscellaneous meal (FMM, cottonseed meal: coconut meal = at a 1:1 ratio) on the intestinal health, laying performance, egg quality, and follicle development of laying hens. A total of 1,008 54-wk-old laying hens were randomly divided into 7 treatment groups and fed a corn-soybean base diet in addition to 2%, 4%, and 8% FSM or FMM. The results showed that fermentation increased the contents of crude protein, amino acids (Ser, Gly, Cys, Leu, Lys, His, and Arg), and organic acids (butyric acid, citric acid, succinic acid) and decreased the contents of neutral and acid detergent fiber in the soybean and miscellaneous meals (P < 0.05). Compared with the results found for the control group, feeding with 4% FSM increased the egg production, egg mass and average daily feed intake (ADFI), and feeding with 4% FMM increased the ADFI of laying hens (P < 0.05). Furthermore, feeding with 8% FMM reduced the productive performance and laying performance, supplementation with 4% FSM increased the eggshell strength and weight, and 2 to 4% FSM increased the egg albumen height and Haugh unit (P < 0.05). Moreover, 2 to 8% FSM or 2 to 4% FMM enhanced the apparent digestibility of dry matter, crude protein, and NDF for laying hens (P < 0.05). The relative weight, villus height, crypt depth, and villus:crypt ratio of the jejunum were higher in the 4% FSM- and FMM-fed groups (P < 0.05). Moreover, diamine oxidase (DAO) activity, transepithelial electrical resistance (TEER), and the expression of tight junction proteins (ZO-1, Occluding, and Claudin1), the intestinal stem cell marker Lgr5, and the proliferation cell marker proliferating cell nuclear antigen (PCNA) was upregulated in the jejunum of laying hens fed 4% FSM and FMM (P < 0.05). The relative weight of the ovaries, and the number of small yellow follicles and large white follicles were elevated after 4% FSM or FMM supplementation. Furthermore, the levels of serum follicle-stimulating hormone and luteinizing hormone were increased in the 4% FSM and FMM groups (P < 0.05). In conclusion, the supplementation of laying hen feed with FSM and FMM improved the laying performance, egg quality, intestinal barrier function, and follicle development of aged laying hens, and 4% FSM supplementation was optimal.


Asunto(s)
Pollos , Suplementos Dietéticos , Alimentos Fermentados , Alimentos de Soja , Animales , Femenino , Alimentación Animal/análisis , Dieta/veterinaria , Harina , Nutrientes , Glycine max/química
13.
Am J Ophthalmol Case Rep ; 29: 101761, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36544750

RESUMEN

Purpose: To report a case of eye structure changes in a patient with long-term overdose of sildenafil citrate. Observations: A 28-year-old male presented to our outpatient clinic with flare sensation in both eyes for 1 year after taking sildenafil citrate at a dose of 200 mg daily for two years. mERG and OCT examination revealed persistent damage of retinal photoreceptor cells. The symptoms did not disappear after 3 months off the medication. Conclusions and importance: Long term excessive use of overdose sildenafil citrate can cause serious damage to retinal photoreceptor cells. The retinal side effects of sildenafil citrate still need to be further investigated, and the administration of systemic overdose also needs to be considered by all physicians, not just ophthalmologists.

14.
J Agric Food Chem ; 71(1): 895-904, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36535023

RESUMEN

The small intestinal epithelium is regulated in response to various beneficial or harmful environmental information. Deoxynivalenol (DON), a mycotoxin widely distributed in cereal-based feeds, induces oxidative stress damage in the intestine due to the mitochondrial stress. As a functional nutrient, selenomethionine (Se-Met) is involved in synthesizing several antioxidant enzymes, yet whether it can replenish the intestinal epithelium upon DON exposure remains unknown. Therefore, the in vivo model C57BL/6 mice and the in vitro model MODE-K cells were treated with l-Se-Met and DON alone or in combination to confirm the status of intestinal stem cell (ISC)-driven epithelial regeneration. The results showed that 0.1 mg/kg body weight (BW) Se-Met reinstated the growth performance and integrity of jejunal structure and barrier function in DON-challenged mice. Moreover, Lgr5+ ISCs and PCNA+ mitotic cells in crypts were prominently increased by Se-Met in the presence of DON, concomitant with a significant increase in absorptive cells, goblet cells, and Paneth cells. Simultaneously, crypt-derived jejunal organoids from the Se-Met + DON group exhibited more significant growth advantages ex vivo. Furthermore, Se-Met-stimulated Keap1/Nrf2-dependent antioxidant system (T-AOC and GSH-Px) to inhibit the accumulation of ROS and MDA in the jejunum and serum. Moreover, Se-Met failed to rescue the DON-triggered impairment of cell antioxidant function after Nrf2 perturbation using its specific inhibitor ML385 in MODE-K cells. In conclusion, Se-Met protects ISC-driven intestinal epithelial integrity against DON-induced oxidative stress damage by modulating Keap1/Nrf2 signaling.


Asunto(s)
Selenometionina , Tricotecenos , Ratones , Animales , Selenometionina/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Tricotecenos/toxicidad , Tricotecenos/metabolismo , Ratones Endogámicos C57BL , Mucosa Intestinal/metabolismo , Estrés Oxidativo
15.
Cell Mol Life Sci ; 79(10): 523, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36121491

RESUMEN

Intestinal stem cells (ISCs) decode and coordinate various types of nutritional information from the diet to support the crypt-villus axis architecture, but how specific dietary molecules affect intestinal epithelial homeostasis remains unclear. In the current study, L-glutamate (Glu) supplementation in either a nitrogen-free diet (NFD) or a corn-soybean meal diet (CSMD) stimulated gut growth and ISC expansion in weaned piglets. Quantitative proteomics screening identified the canonical Wnt signalling pathway as a central regulator of intestinal epithelial development and ISC activity in vivo. Importantly, the Wnt transmembrane receptor Frizzled7 (FZD7) was upregulated in response to dietary Glu patterns, and its perturbations in intestinal organoids (IOs) treated with a specific inhibitor and in FZD7-KO IPEC-J2 cells disrupted the link between Glu inputs and ß-catenin signalling and a subsequent reduction in cell viability. Furthermore, co-localization, coimmunoprecipitation (Co-IP), isothermal titration calorimetry (ITC), and microscale thermophoresis (MST) revealed that Glu served as a signalling molecule directly bound to FZD7. We propose that FZD7-mediated integration of the extracellular Glu signal controls ISC proliferation and differentiation, which provides new insights into the crosstalk of nutrients and ISCs.


Asunto(s)
Ácido Glutámico , beta Catenina , Animales , Proliferación Celular , Ácido Glutámico/metabolismo , Células Madre , Porcinos , Vía de Señalización Wnt , beta Catenina/metabolismo
16.
J Agric Food Chem ; 70(34): 10644-10653, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35997221

RESUMEN

R-spondin 1 (RSPO1) is a ligand for the intestinal stem cell (ISC) marker Lgr5 in the crypt, which functions to amplify canonical Wnt signaling to stimulate the division of ISCs. Despite the crucial role of recombinant human RSPO1 (rhRSPO1) in homeostasis and regeneration, little is known about RSPO1 among different species. Here, we cloned the porcine RSPO1 (pRSPO1) gene and obtained rpRSPO1 protein through the expression system of the recombinant Escherichia coli Rosetta (DE3) chemical competent cells. Using the in vitro IPEC-J2 model that combines cell proliferation evaluation approaches, we identified the rpRSPO1 activity in stimulating jejunal epithelial cells. And upon deoxynivalenol challenge in mice, we found that rpRSPO1 ameliorated their growth retardation and jejunal epithelial integrity. Importantly, the ISCs in the jejunum had greater proliferation and differentiation potential that was accompanied by Wnt/ß-catenin pathway activation after rpRSPO1 modulation. Subsequently, the jejunal organoids expanded from these ISCs ex vivo presented robust growth advantages. And the rpRSPO1 was able to guide Wnt/ß-catenin activity to increase ISC activity. Our work systematically demonstrates that rpRSPO1 facilitates ISC expansion by potentiating Wnt/ß-catenin signaling during homeostasis and responding to deoxynivalenol perturbations.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Proliferación Celular , Homeostasis , Humanos , Mucosa Intestinal/metabolismo , Ratones , Células Madre/metabolismo , Porcinos , Tricotecenos , beta Catenina/metabolismo
17.
Animals (Basel) ; 12(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35739903

RESUMEN

The engineered STb-Rosetta Escherichia coli (STb-R) was designed to investigate the effects of Iturin A on the skeletal muscle growth of weaned piglets. A total of 28 piglets were randomly divided into 4 groups (7 piglets per group): the control group (100 mL PBS), the Iturin A group (100 mL 320 mg/kg body weight (BW) Iturin A), the STb-R group (100 mL 1 × 1010 CFU/mL STb-R), and the Iturin A + STb-R group (100 mL 320 mg/kg BW Iturin A + 1 × 1010 CFU/mL STb-R). Compared with the control, STb-R-reduced body weight gain were rescued by Iturin A. The semimembranosus muscle weight recovered to normal level in the Iturin A + STb-R group. The level of relevant genes of the growth axis were elevated by Iturin A, including GHRH in the hypothalamus, GHRHR and GH in the pituitary, and GHR, IGF-1 and IGF-1R in the semimembranosus muscle. Moreover, Iturin A increased the mean fiber area and the number of proliferating cells in the semimembranosus muscle, which were decreased by STb-R. Additionally, the mTORC1 pathway was reactivated by Iturin A to relieve the suppression of STb-R. Collectively, the hypothalamic-pituitary growth axis-mediated Iturin A reactivated the mTORC1 pathway to rescue STb-R-restricted pork skeletal muscle growth.

18.
J Agric Food Chem ; 70(12): 3745-3756, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35312309

RESUMEN

This work provided an interesting finding of lysine (Lys) control on skeletal muscle growth besides protein synthesis. According to the isobaric tag for relative and absolute quantitation and molecular docking analyses, we found both in in vivo skeletal muscle and in vitro muscle satellite cells (MuSCs) that the frizzled7 (FZD7) expression level was positively correlated with Lys levels and this was consistent with the activation of the Wnt/ß-catenin pathway. On the other hand, FZD7 inhibition suppressed the Lys-rescued Wnt/ß-catenin pathway, FZD7 knockdown caused cell proliferation, and Wnt/ß-catenin pathway restrictions could not be compensated for by Lys or Wnt3a. Furthermore, the combination between Lys and recombinant pig frizzled7 (rpFZD7) protein was confirmed by isothermal titration calorimetry. This finding displayed concrete evidence that Lys is not only a molecular block of protein synthesis but is also a ligand for FZD7 to activate ß-catenin to stimulate MuSCs in promoting skeletal muscle growth.


Asunto(s)
Lisina , beta Catenina , Animales , Lisina/metabolismo , Simulación del Acoplamiento Molecular , Músculo Esquelético/metabolismo , Porcinos , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
19.
Poult Sci ; 101(3): 101644, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34986451

RESUMEN

This experiment was undertaken to investigate the effects of parental dietary DL-methionine (DL-Met) and DL-methionyl-DL-methionine (DL-Met-Met) supplementation on the intestinal development of young squabs. A total of 108 pairs of breeding pigeons and 432 one-day-old squabs were randomly divided into 3 groups: the control group (CON) was fed a basal diet (CP = 15%) and the experimental groups were fed a basal diet supplemented with 0.3% DL-Met or DL-Met-Met. Each pair of breeding pigeons nourished 4 young squabs, and 8 squabs from each treatment were randomly sampled at the end of the experiment. The results indicated that DL-Met and DL-Met-Met supplementation improved the intestinal morphology and structure in the squabs, as reflected by the increased relative intestinal weight of each small intestinal segment, villus height, and villus to crypt ratio. In addition, DL-Met and DL-Met-Met supplementation significantly increased the protein expression of cell proliferation markers (Ki67 and PCNA) and tight junction proteins (ZO-1 and Claudin-1) in the jejunum and strengthened the fluorescence signal intensity of Ki67, PCNA and Villin. Moreover, the expression of Wnt/ß-catenin signaling pathway-related proteins (Frizzled 7 [FZD7], p-GSK-3ß, Active ß-catenin, ß-catenin, TCF4, c-Myc, and Cyclin D1), and intestinal peptide transporter 1 (PepT1) in the jejunum was considerably higher in the treatment group than in the CON group (P < 0.05), with the DL-Met-Met group having the highest expression. Consistently, the molecular docking results predicted the possibility that DL-Met or DL-Met-Met binds to the membrane receptor FZD7, which mediates Wnt/ß-catenin signaling. Collectively, the improvement of the intestinal development in squabs after parental dietary 0.3% DL-Met and DL-Met-Met supplementation could be through activation of Wnt/ß-catenin signaling pathway, and DL-Met-Met is superior to DL-Met. Our findings may provide basic data for further optimizing the feeding formula of breeding pigeons and improving the growth and development of squabs.


Asunto(s)
Columbidae , Metionina , Alimentación Animal/análisis , Animales , Glucógeno Sintasa Quinasa 3 beta , Metionina/farmacología , Simulación del Acoplamiento Molecular , Vía de Señalización Wnt , beta Catenina
20.
Anim Nutr ; 7(4): 1031-1038, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34738033

RESUMEN

The intestinal health of chick embryos is vital for their life-long growth, and exogenous nutrition intervention may provide sufficient nutrition for embryonic development. In the present study, we investigated the effect of in ovo injection of L-methionine (L-Met) on the intestinal structure and barrier function of chick embryos. There were 4 groups of treatments: the control (CON) group injected with phosphate-buffered saline (PBS) and the other 3 groups injected with 5, 10, and 20 mg L-Met/egg, respectively. The injection was performed on embryonic day 9 (E9), and intestinal samples were collected on the day of hatching for analysis. The results showed that, compared with the CON group, the groups administered an in ovo injection of L-Met increased relative weights of the duodenum, jejunum, and ileum (P < 0.05). Hematoxylin and eosin (H&E) staining showed that the groups injected with 5, 10, and 20 mg L-Met significantly increased villus height and crypt depth (P < 0.05). Moreover, in ovo injection of 10 mg L-Met also increased the transepithelial electrical resistance (TEER) of the jejunum (P < 0.05). Injection with 10 and 20 mg L-Met increased the expression of the tight junction proteins (ZO-1 and claudin-1) and the fluorescence signal intensity of Ki67 and villin proteins (P < 0.05). Further, the protein expression of phospho-Janus kinase 2 (p-JAK2) and phospho-signal transducer and activator of transcription 3 (p-STAT3) was significantly increased by 10 or 20 mg L-Met injection (P < 0.05). In conclusion, the injection of L-Met, especially at a dose of 10 mg, showed beneficial effects on the intestinal integrity of chick embryos due to the activation of the JAK2/STAT3 signaling pathway. Our results may provide new insights for regulating the intestinal development of embryonic chicks and the rapid growth of chicks after hatching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...