Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(20): e2306924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460178

RESUMEN

Inflammation-responsive hydrogels loaded with therapeutic factors are effective biomaterials for bone tissue engineering and regenerative medicine. In this study, a matrix metalloproteinase (MMP)-responsive injectable hydrogel is constructed by integrating an MMP-cleavable peptide (pp) into a covalent tetra-armed poly-(ethylene glycol) (PEG) network for precise drug release upon inflammation stimulation. To establish a pro-regenerative environment, phosphatidylserine (PS) is encapsulated into a scaffold to form the PEG-pp-PS network, which could be triggered by MMP to release a large amount of PS during the early stage of inflammation and retain drug release persistently until the later stage of bone repair. The hydrogel is found to be mechanically and biologically adaptable to the complex bone defect area. In vivo and in vitro studies further demonstrated the ability of PEG-pp-PS to transform macrophages into the anti-inflammatory M2 phenotype and promote osteogenic differentiation, thus, resulting in new bone regeneration. Therefore, this study provides a facile, safe, and promising cell-free strategy on simultaneous immunoregulation and osteoinduction in bone engineering.


Asunto(s)
Regeneración Ósea , Hidrogeles , Inmunomodulación , Metaloproteinasas de la Matriz , Fosfatidilserinas , Regeneración Ósea/efectos de los fármacos , Hidrogeles/química , Animales , Fosfatidilserinas/metabolismo , Inmunomodulación/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Ingeniería de Tejidos/métodos , Ratones , Osteogénesis/efectos de los fármacos , Polietilenglicoles/química , Modelos Animales de Enfermedad , Andamios del Tejido/química , Materiales Biocompatibles , Modelos Animales
2.
BMC Oral Health ; 23(1): 500, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468873

RESUMEN

OBJECTIVES: We used three-dimensional (3D) virtual images to undertake a subjective evaluation of how different factors affect the perception of facial asymmetry among orthodontists and laypersons with the aim of providing a quantitative reference for clinics. MATERIALS AND METHODS: A 3D virtual symmetrical facial image was acquired using FaceGen Modeller software. The left chin, mandible, lip and cheek of the virtual face were simulated in the horizontal (interior/exterior), vertical (up/down), or sagittal (forward or backward) direction in 3, 5, and 7 mm respectively with Maya software to increase asymmetry for the further subjective evaluation. A pilot study was performed among ten volunteers and 30 subjects of each group were expected to be included based on 80% sensitivity in this study. The sample size was increased by 60% to exclude incomplete and unqualified questionnaires. Eventually, a total of 48 orthodontists and 40 laypersons evaluated these images with a 10-point visual analog scale (VAS). The images were presented in random order. Each image would stop for 30 s for observers with a two-second interval between images. Asymmetry ratings and recognition accuracy for asymmetric virtual faces were analyzed to explore how different factors affect the subjective evaluation of facial asymmetry. Multivariate linear regression and multivariate logistic regression models were used for statistical data analysis. RESULTS: Orthodontists were found to be more critical of asymmetry than laypersons. Our results showed that observers progressively decreased ratings by 1.219 on the VAS scale and increased recognition rates by 2.301-fold as the degree of asymmetry increased by 2 mm; asymmetry in the sagittal direction was the least noticeable compared with the horizontal and vertical directions; and chin asymmetry turned out to be the most sensitive part among the four parts we simulated. Mandible asymmetry was easily confused with cheek asymmetry in the horizontal direction. CONCLUSIONS: The degree, types and parts of asymmetry can affect ratings for facial deformity as well as the accuracy rate of identifying the asymmetrical part. Although orthodontists have higher accuracy in diagnosing asymmetrical faces than laypersons, they fail to correctly distinguish some specific asymmetrical areas.


Asunto(s)
Asimetría Facial , Ortodoncistas , Humanos , Asimetría Facial/diagnóstico por imagen , Estudios Transversales , Proyectos Piloto , Mentón , Imagenología Tridimensional/métodos , Estética Dental
3.
Stem Cells Int ; 2022: 1278921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591373

RESUMEN

Kartogenin (KGN), a novel small-molecule compound, has been considered a promising chondrogenic promoter in cartilage regeneration. However, whether KGN also participates in osteogenesis and bone regeneration remains unclear. This research was designed to explore the roles of KGN on osteogenic differentiation in bone marrow mesenchymal stem cells (BMMSCs) as well as determine the possible mechanism of osteogenesis. We revealed that KGN enhanced the osteogenic differentiation capacity of BMMSCs without affecting cell proliferation, during which autophagic activities and the expression of autophagy-related genes were promoted. Moreover, KGN upregulated the phosphorylation level of the Smad1/5/9 signaling, and inhibition and activation of Smad signaling were also applied to validate the involvement of Smad in BMMSCs during KGN treatment. In summary, this study shows that KGN promotes osteogenic differentiation of BMMSCs through enhancing autophagic levels and upregulating Smad1/5/9 signaling mechanically.

4.
Front Bioeng Biotechnol ; 8: 1015, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974327

RESUMEN

Extracellular vesicles (EVs) are heterogeneous nanoparticles actively released by cells that comprise highly conserved and efficient systems of intercellular communication. In recent years, numerous studies have proven that EVs play an important role in the field of bone tissue engineering (BTE) due to several advantages, such as good biosafety, stability and efficient delivery. However, the application of EVs therapies in bone regeneration has not been widely used. One of the major challenges for the application of EVs is the lack of sufficient scaffolds to load and control the release of EVs. Thus, in this review, we describe the most advanced current strategies for delivering EVs with various biomaterials for the use in bone regeneration, the role of EVs in bone regeneration, the distribution of EVs mediated by biomaterials and common methods of promoting EVs delivery efficacy with a focus on biomaterial properties.

5.
FASEB J ; 34(11): 15327-15337, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32951236

RESUMEN

Palatal expansion has been widely used for the treatment of transverse discrepancy or maxillae hypoplasia, but the biological mechanism of bone formation during this procedure is largely unknown. Osteoclasts, which could be regulated by T cells and other components of the immune system, play a crucial role in force-induced bone remodeling. However, whether T cells participate in the palatal expansion process remains to be determined. In this study, we conducted the tooth borne rapid palatal expansion model on the mouse, and detect whether the helper T cells (Th) and regulatory T cells (Treg) could affect osteoclasts and further bone formation. After bonding open spring palatal expanders for 3-day, 5-day, 7-day, and retention for 28-day, micro-computed tomography scanning, histologic, and immunofluorescence staining were conducted to evaluate how osteoclasts were regulated by T cells during the bone remodeling process. We revealed that the increased osteoclast number was downregulated at the end of the early stage of rapid palatal expansion. Type 1 helper T (Th1) cells and Type 17 helper T (Th17) cells increased initially and promoted osteoclastogenesis. Thereafter, the regulatory T (Treg) cells emerged and maintained a relatively high level at the late stage of the experiment to downregulate the osteoclast number by inhibiting Th1 and Th17 cells, which governed the new bone formation. In conclusion, orchestrated T cells are able to regulate osteoclasts at the early stage of rapid palatal expansion and further facilitate bone formation during retention. This study identifies that T cells participate in the palatal expansion procedure by regulating osteoclasts and implies the potential possibility for clinically modulating T cells to improve the palatal expansion efficacy.


Asunto(s)
Remodelación Ósea , Osteoclastos/citología , Osteogénesis , Hueso Paladar/citología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/inmunología , Técnica de Expansión Palatina , Hueso Paladar/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...