Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Front Oncol ; 14: 1391724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38826783

RESUMEN

Aim: This study comprehensively assesses the incidence and profiles of treatment-related adverse events (trAEs) of immune checkpoint inhibitor (ICI)-based therapies across cancer at various sites. Methods: We systematically searched the PubMed, Embase, and Cochrane databases for trials investigating ICI-based therapies published between their inception and August 2023. Results: In total, 147 studies involving 45,855 patients met the inclusion criteria. Among them, patients treated with ICIs reported 39.8% and 14.9% of all-grade and grade ≥3 immune-related adverse events (irAEs), respectively. The most common all-grade irAEs were dermatological and gastrointestinal issues, diarrhea, and pruritus, whereas patients who received ICIs showed most common grade ≥3 irAEs, including gastrointestinal events, diarrhea, increased aspartate aminotransferase and alanine transaminase levels, and hepatic and dermatological events. The overall trAE incidence in patients treated with ICIs was 83.2% for all-grade trAEs and 38.2% for grade ≥3 trAEs. TrAE incidence was highest for patients treated with cytotoxic T lymphocyte antigen-4 inhibitors for all-grade and grade ≥3 trAEs, with incidences of 86.4% and 39.2%, respectively. ICIs combined with targeted therapy showed the highest all-grade and grade ≥3 trAEs, with incidences of 96.3% and 59.4%, respectively. The most common all-grade trAEs were anemia, decrease in white blood cell count, decrease in neutrophil count, nausea, fatigue, diarrhea, and alopecia; patients who received ICIs presented relatively high incidences of grade ≥3 trAEs. Conclusion: This study provided comprehensive data regarding irAEs and trAEs in patients receiving ICIs. These results should be applied in clinical practice to provide an essential reference for safety profiles of ICIs. Systematic review registration: INPLASY platform, identifier INPLASY202380119.

2.
J Proteomics ; 299: 105157, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462170

RESUMEN

Traditional Chinese medicine has been utilized in China for approximately thousands of years in clinical settings to prevent Alzheimer's disease (AD) and enhance memory, despite the lack of a systematic exploration of its biological underpinnings. Exciting research has corroborated the beneficial effects of tetrahydroxy stilbene glycoside (TSG), an extract derived from Polygonum multiflorum, in delaying learning and memory impairment in a model that mimics AD. Therefore, the primary objective of this study is to investigate the major function of TSG upon protein regulation in AD. Herein, a novel approach, encompassing data independent acquisition (DIA), DIA phosphorylated proteomics, and parallel reaction monitoring (PRM), was utilized to integrate quantitative proteomic data collected from APP/PS1 mouse model exhibiting toxic intracellular aggregation of Aß. Initially, we deliberated upon both single and multi-dimensional data pertaining to AD model mice. Furthermore, we authenticated disparities in protein phosphorylation quantity and expression, phosphorylation function, and ultimately phosphorylation kinase analysis. In order to validate the results, we utilized PRM ion monitoring technology to identify potential protein or peptide biomarkers. In the mixed samples, targeted detection of 50 target proteins revealed that 26 to 33 target proteins were stably detected by PRM. In summary, our findings provide new candidates for AD biomarker, which have been identified and validated through protein researches conducted on mouse brains. This offers a wealth of potential resources for extensive biomarker validation in neurodegenerative diseases. SIGNIFICANCE: DIA phosphorylated proteomics technique was used to detect and analyze phosphorylated proteins in brain tissues of mice with AD. Data were analyzed by various bioinformatics tools to explore the phosphorylation events and characterize them related to TSG. The results of DIA were further verified by PRM. Besides, we mapped the major metabolite classes emerging from the analyses to key biological pathways implicated in AD to understand the potential roles of the molecules and the interactions in triggering symptom onset and progression of AD. Meanwhile, we clarified that in the context of AD onset and TSG intervention, the changes in proteins, protein phosphorylation, phosphorylation kinases, and the internal connections.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Proteómica , Precursor de Proteína beta-Amiloide , Glicósidos , Biomarcadores , Ratones Transgénicos , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38498744

RESUMEN

Cognitive impairment is one of the most common non-motor symptoms of Parkinson's disease (PD). Previous studies have demonstrated that low-intensity transcranial ultrasound stimulation can significantly suppress the motor symptoms of PD. However, whether ultrasound stimulation can improve cognitive ability in PD and the related neural oscillation mechanism remain unclear to date. To evaluate the effect of ultrasound stimulation on memory ability in PD and explore its neural oscillation mechanism. Ultrasonography was used for 7-day stimulation of the CA1 in transgenic mice with PD. The working memory ability of the PD mice was then tested using novel object discrimination, and the local field potential and spikes in the mice CA1 were recorded at the same time as in the behavioral test. We found that ultrasound stimulation of the PD mice CA1 for 4 days: 1) significantly increased their learning and memory ability, although the learning and memory ability on the 7th day after the stimulation stopped was not significantly different from that before stimulation (P>0.05); 2) significantly increased the relative power of theta, low gamma, and high gamma frequency bands of the local field potential, and the phase amplitude coupling strength between theta and low gamma and between theta and high gamma; and 3) modulated the phase-locking angle between the spike of interneuron and theta wave to a 180°-360° rise cycle. Transcranial ultrasound stimulation can improve the learning and memory abilities of PD mice, and evoking neural oscillations in the CA1 is the potential mechanism.


Asunto(s)
Memoria a Corto Plazo , Enfermedad de Parkinson , Ratones , Animales , Memoria a Corto Plazo/fisiología , Cognición , Ultrasonografía
4.
Artículo en Inglés | MEDLINE | ID: mdl-38329869

RESUMEN

Transcranial ultrasound stimulation (TUS) is a noninvasive brain neuromodulation technique. The application of TUS for Alzheimer's disease (AD) therapy has not been widely studied. In this study, a long-term course (28 days) of TUS was used to stimulate the hippocampus of APP/PS1 mice. We examined the modulatory effect of TUS on behavior and neural oscillation in AD mice. We found that TUS can 1) improve the learning and memory abilities of AD mice; 2) reduce the phase-amplitude coupling of delta-epsilon, delta-gamma and theta-gamma frequency bands of local field potential, and increase the relative power of epsilon frequency bands in AD mice; 3) reduce the spike firing rate of interneurons and inhibit the phase-locked angle deflection between the theta frequency bands and the spikes of the two types of neurons that develops with the progression of the disease in AD mice. In summary, we demonstrate that TUS could effectively improve cognitive behavior and modulate neural oscillation with AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/terapia , Hipocampo , Aprendizaje , Modelos Animales de Enfermedad
5.
Curr Neuropharmacol ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38333970

RESUMEN

BACKGROUND: Innovative treatments of refractory epilepsy are widely desired, for which chemogenetic technology can provide region- and cell-type-specific modulation with relative noninvasiveness. OBJECTIVES: We aimed to explore the specific applications of chemogenetics for locally and remotely networks controlling hippocampal seizures. METHODS: A virus coding for a modified human Gi-coupled M4 muscarinic receptor (hM4Di) on pyramidal cells was injected into either the right hippocampal CA3 or the bilateral anterior nucleus of the thalamus (ANT) in rats. After one month, seizures were induced by 4-aminopyridine (4-AP) injection into the right CA3. Simultaneously, clozapine-N-oxide (CNO) (2.5 mg/kg) or clozapine (0.1 mg/kg), the specific ligands acting on hM4Di, were injected intraperitoneally. We also set up hM4Di control and clozapine control groups to eliminate the influence of viral transfection and the ligand alone on the experimental results. RESULTS: For both local and remote controls, the mean seizure duration was significantly reduced upon ligand application in the experimental groups. Seizure frequency, on the other hand, only showed a significant decrease in local control, with a lower frequency in the clozapine group than in the CNO group. Both the effects of CNO and clozapine were time-dependent, and clozapine was faster than CNO in local seizure control. CONCLUSION: This study shows the potency of chemogenetics to attenuate hippocampal seizures locally or remotely by activating the transfected hM4Di receptor with CNO or clozapine. ANT is suggested as a potentially safe chemogenetic application target in the epileptic network for focal hippocampal seizures.

6.
Mil Med Res ; 10(1): 67, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115158

RESUMEN

Electroencephalography (EEG) is a non-invasive measurement method for brain activity. Due to its safety, high resolution, and hypersensitivity to dynamic changes in brain neural signals, EEG has aroused much interest in scientific research and medical fields. This article reviews the types of EEG signals, multiple EEG signal analysis methods, and the application of relevant methods in the neuroscience field and for diagnosing neurological diseases. First, three types of EEG signals, including time-invariant EEG, accurate event-related EEG, and random event-related EEG, are introduced. Second, five main directions for the methods of EEG analysis, including power spectrum analysis, time-frequency analysis, connectivity analysis, source localization methods, and machine learning methods, are described in the main section, along with different sub-methods and effect evaluations for solving the same problem. Finally, the application scenarios of different EEG analysis methods are emphasized, and the advantages and disadvantages of similar methods are distinguished. This article is expected to assist researchers in selecting suitable EEG analysis methods based on their research objectives, provide references for subsequent research, and summarize current issues and prospects for the future.


Asunto(s)
Electroencefalografía , Neurología , Humanos , Electroencefalografía/métodos , Encéfalo
7.
Free Radic Res ; 57(4): 325-337, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37533406

RESUMEN

Inflammation is a defensive immune response to external stimuli. However, uncontrolled inflammation may cause potential damage to the host. Therefore, timely control of uncontrolled inflammation is particularly important. Previous studies have found that small molecules with antioxidant activity, such as peroxidase mimic enzymes, can inhibit the development of inflammation. DhHP-6 is a new peptide mimic of peroxidase previously designed by our laboratory. Here, we explored its anti-inflammatory activity in vitro and in vivo. Our results showed that treatment with DhHP-6 significantly reduced the production of reactive oxygen species (ROS), NO, IL-6, and TNF-α in RAW264.7 cells induced by lipopolysaccharides (LPS); in addition, it also blocked the phosphorylation of extracellularly regulated kinase 1 and 2 (ERK1/2) and ribosomal s6 kinase 1 (RSK1), thereby blocking the phosphorylation and degradation of IκBα, and inhibiting the nuclear translocation of p65. Interestingly, treatment with DhHP-6 blocked the phosphorylation of ERK1/2 and myosin light chain kinase (MLCK) in HUVECs induced by LPS. Finally, we found that DhHP-6 treatment significantly reduced the infiltration of immune cells in balloon model rats. Therefore, we believe that DhHP-6 is a potent inhibitor of inflammation.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Permeabilidad Capilar , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Peroxidasas/metabolismo
8.
Front Endocrinol (Lausanne) ; 14: 1158949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251681

RESUMEN

Background: This research work was aimed at evaluating the incidence and risk factors of adverse events (AEs) occurring in patients treated with abiraterone acetate (AA) and prednisone (PDN) outside clinical trials. These associations were assessed regarding the survival outcomes. Methods: The study included 191 patients aged ≥18 years of confirmed metastatic castration-resistant prostate cancer (mCRPC) between March 2017 and April 2022. AE incidences were descriptively summarized from the whole cohort. Baseline characteristics, safety (treatment-emergent AEs and severe AEs), and efficacy [progression-free survival (PFS)] were analyzed. Multi-variable Cox proportional hazards models were employed to assess the factors linked with PFS. Results: Overall, the median PFS was 17.16 months (range, 0.5-57.58). Patient baseline prostate-specific antigen (PSA) ≧̸10 ng/ml (p = 0.000), multiple organ metastasis (p = 0.007), hypertension (p = 0.004), and coronary heart disease (p = 0.004) were associated with worse PFS; however, radiotherapy (p = 0.028) was linked to better PFS at univariate analysis in the overall cohort. Baseline multiple organ metastasis, hypertension, and radiotherapy remained statistically significant in multivariable models (p = 0.007, p= 0.005, and p = 0.011, respectively).Incidence of AEs showed increased bilirubin (BIL) (55/191 patients, 28.8%) followed by increased alanine aminotransferase/aspartate aminotransferase (ALT/AST) (48/191 patients, 25.09%). The most common grade 3 AEs were increased ALT (3/191, 1.57%) followed by elevated BIL, hypercholesterolemia, and hypokalemia. Anemia had shorter PFS. There were no unexpected AEs in any patient. Conclusion: AA is effective and tolerated in asymptomatic or slightly symptomatic mCRPC in "real-life" setting. The survival outcomes are influenced by multiple organ metastasis, hypertension, and radiotherapy.


Asunto(s)
Hipertensión , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Adolescente , Adulto , Acetato de Abiraterona/efectos adversos , Prednisona/efectos adversos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Estudios Retrospectivos , Hipertensión/tratamiento farmacológico
9.
Neuroimage ; 270: 119979, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863547

RESUMEN

Previous studies have demonstrated that transcranial ultrasound stimulation (TUS) not only modulates cerebral hemodynamics, neural activity, and neurovascular coupling characteristics in resting samples but also exerts a significant inhibitory effect on the neural activity in task samples. However, the effect of TUS on cerebral blood oxygenation and neurovascular coupling in task samples remains to be elucidated. To answer this question, we first used forepaw electrical stimulation of the mice to elicit the corresponding cortical excitation, and then stimulated this cortical region using different modes of TUS, and simultaneously recorded the local field potential using electrophysiological acquisition and hemodynamics using optical intrinsic signal imaging. The results indicate that for the mice under peripheral sensory stimulation state, TUS with a duty cycle of 50% can (1) enhance the amplitude of cerebral blood oxygenation signal, (2) reduce the time-frequency characteristics of evoked potential, (3) reduce the strength of neurovascular coupling in time domain, (4) enhance the strength of neurovascular coupling in frequency domain, and (5) reduce the time-frequency cross-coupling of neurovasculature. The results of this study indicate that TUS can modulate the cerebral blood oxygenation and neurovascular coupling in peripheral sensory stimulation state mice under specific parameters. This study opens up a new area of investigation for potential applicability of TUS in brain diseases related to cerebral blood oxygenation and neurovascular coupling.


Asunto(s)
Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Hemodinámica/fisiología , Estimulación Eléctrica , Ultrasonografía , Circulación Cerebrovascular/fisiología
10.
Brain Behav ; 13(3): e2922, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36793204

RESUMEN

AIMS: Opioid addiction is a major public health issue, yet its underlying mechanism is still unknown. The aim of this study was to explore the roles of ubiquitin-proteasome system (UPS) and regulator of G protein signaling 4 (RGS4) in morphine-induced behavioral sensitization, a well-recognized animal model of opioid addiction. METHODS: We explored the characteristics of RGS4 protein expression and polyubiquitination in the development of behavioral sensitization induced by a single morphine exposure in rats, and the effect of a selective proteasome inhibitor, lactacystin (LAC), on behavioral sensitization. RESULTS: Polyubiquitination expression was increased in time-dependent and dose-related fashions during the development of behavioral sensitization, while RGS4 protein expression was not significantly changed during this phase. Stereotaxic administration of LAC into nucleus accumbens (NAc) core inhibited the establishment of behavioral sensitization. CONCLUSION: UPS in NAc core is positively involved in behavioral sensitization induced by a single morphine exposure in rats. Polyubiquitination was observed during the development phase of behavioral sensitization, while RGS4 protein expression was not significantly changed, indicating that other members of RGS family might be substrate proteins in UPS-mediated behavioral sensitization.


Asunto(s)
Morfina , Trastornos Relacionados con Opioides , Animales , Ratas , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/farmacología , Morfina/farmacología , Morfina/metabolismo , Núcleo Accumbens/metabolismo , Trastornos Relacionados con Opioides/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Ubiquitina/metabolismo , Ubiquitina/farmacología
11.
J Neural Eng ; 20(1)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36599159

RESUMEN

Objective.Previous studies have demonstrated that transcranial ultrasound stimulation (TUS) with noninvasive high penetration and high spatial resolution has an effective neuromodulatory effect on neurological diseases. Attention deficit hyperactivity disorder (ADHD) is a persistent neurodevelopmental disorder that severely affects child health. However, the neuromodulatory effects of TUS on ADHD have not been reported to date. This study aimed to investigate the neuromodulatory effects of TUS on ADHD.Approach.TUS was performed in ADHD model rats for two consecutive weeks, and the behavioral improvement of ADHD, neural activity of ADHD from neurons and neural oscillation levels, and the plasma membrane dopamine transporter and brain-derived neurotrophic factor (BDNF) in the brains of ADHD rats were evaluated.Main results.TUS can improve cognitive behavior in ADHD rats, and TUS altered neuronal firing patterns and modulated the relative power and sample entropy of local field potentials in the ADHD rats. In addition, TUS can also enhance BDNF expression in the brain tissues.Significance. TUS has an effective neuromodulatory effect on ADHD and thus has the potential to clinically improve cognitive dysfunction in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Ratas , Animales , Trastorno por Déficit de Atención con Hiperactividad/terapia , Factor Neurotrófico Derivado del Encéfalo , Encéfalo/metabolismo , Neuronas/metabolismo
12.
Exp Cell Res ; 422(1): 113432, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442518

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) is a brain injury that usually occurs during thrombolytic therapy for acute ischemic stroke and impacts human health. Oxidative stress is one of the major causative factors of CIRI. DhHP-3 is a novel peroxidase-mimicking enzyme that exhibits robust reactive oxygen species (ROS) scavenging ability in vitro. Here, we established in vitro and in vivo models of cerebral ischemia-reperfusion to mechanistically investigate whether DhHP-3 can alleviate CIRI. DhHP-3 could reduce ROS, down-regulate apoptotic proteins, suppress p53 phosphorylation, attenuate the DNA damage response (DDR), and inhibit apoptosis in SH-SY5Y cells subjected to oxygen-glucose deprivation/re-oxygenation (OGD/R) and in the brain of Sprague Dawley rats subjected to transient middle cerebral artery occlusion. In conclusion, DhHP-3 has bioactivity of CIRI inhibition through suppression of the ROS-induced apoptosis.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Neuroblastoma , Daño por Reperfusión , Ratas , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/genética , Isquemia Encefálica/metabolismo , Estrés Oxidativo , Apoptosis , Péptidos/metabolismo
13.
Cereb Cortex ; 33(9): 5238-5250, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36376911

RESUMEN

Previous studies have shown that modulating neural activity can affect rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. Low-intensity transcranial ultrasound stimulation (TUS) can effectively modulate neural activity. However, the modulation effect of TUS on REM and NREM sleep is still unclear. In this study, we used ultrasound to stimulate motor cortex and hippocampus, respectively, and found the following: (i) In healthy mice, TUS increased the NREM sleep ratio and decreased the REM sleep ratio, and altered the relative power and sample entropy of the delta band and spindle in NREM sleep and that of the theta and gamma bands in REM sleep. (ii) In sleep-deprived mice, TUS decreased the ratio of REM sleep or the relative power of the theta band during REM sleep. (iii) In sleep-disordered Alzheimer's disease (AD) mice, TUS increased the total sleep time and the ratio of NREM sleep and modulated the relative power and the sample entropy of the delta and spindle bands during NREM and that of the theta band during REM sleep. These results demonstrated that TUS can effectively modulate REM and NREM sleep and that modulation effect depends on the sleep state of the samples, and can improve sleep in sleep-disordered AD mice.


Asunto(s)
Sueño REM , Sueño de Onda Lenta , Ratones , Animales , Sueño REM/fisiología , Electroencefalografía/métodos , Sueño/fisiología , Sueño de Onda Lenta/fisiología , Hipocampo/fisiología
14.
Cereb Cortex ; 33(8): 4665-4676, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36137570

RESUMEN

Low-intensity transcranial ultrasound stimulation (TUS) can modulate the coupling of high-frequency (160-200 Hz) neural oscillations and cerebral blood oxygen metabolism (BOM); however, the correlation of low-frequency (0-2 Hz) neural oscillations with BOM in temporal and frequency domains under TUS remains unclear. To address this, we monitored the TUS-evoked neuronal calcium oscillations and BOM simultaneously in the mouse visual cortex by using multimodal optical imaging with a high spatiotemporal resolution. We demonstrated that TUS can significantly increase the intensity of the neuronal calcium oscillations and BOM; the peak value, peak time, and duration of calcium oscillations are functionally related to stimulation duration; TUS does not significantly increase the neurovascular coupling strength between calcium oscillations and BOM in the temporal domain; the time differences of the energy peaks between TUS-induced calcium oscillations and BOM depend on their spectral ranges; the frequency differences of the energy peaks between TUS-induced calcium oscillations and BOM depend on their time ranges; and TUS can significantly change the phase of calcium oscillations and BOM from uniform distribution to a more concentrated region. In conclusion, ultrasound stimulation can evoke the time-frequency cross-coupling between the cortical low-frequency neuronal calcium oscillations and BOM in mouse.


Asunto(s)
Señalización del Calcio , Acoplamiento Neurovascular , Ratones , Animales , Neuronas , Oxígeno
15.
Biomimetics (Basel) ; 7(4)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36546940

RESUMEN

Periodontitis is an inflammatory disease induced by plaque microorganisms. In the clinic, antibiotic assistant periodontal mechanical therapy is the most effective therapy for the treatment of periodontitis. However, the drug resistance of the antibiotics and the repeated coming and diminishing of the disorder of oxidation-reduction balance in the inflammatory tissue could not meet the high requirements for periodontic health control in long periods. Deuterohemin-ala-his-thr-val-glu-lys (DhHP-6) is a biomimetic oxidase-mimicking enzyme that simulates the reactive oxygen radical scavenger function of heme by synthesizing the new molecular material following the key structure and amino acid sequence of heme. In this article, we report the antioxidant and anti-inflammatory properties of DhHP-6 by building a inflammatory model for human gingival fibroblasts (HGFs) stimulated by lipolysaccharide (LPS) and its effects on periodontitis in Wistar rats. DhHP-6 reduced the oxidative stress of HGFs by increasing the amount of the reductase species of glutathione (GSH) and catalase (CAT) while decreasing the amount of oxidase species of malonaldehyde (MDA) and reactive oxygen species (ROS). DhHP-6 had a dose-dependent protective effect on alveolar bone absorption in rats with periodontitis, enhanced antioxidant capacity, and reduced inflammation. As determined by Micro-CT scanning, DhHP-6 reduced alveolar bone loss and improved the bone structure of the left maxillary first molar of rats. There were no obvious morphological and histological differences in the rat organs with or without DhHP-6 treatment. These results suggest that DhHP-6 can be used to treat periodontitis by increasing the expression levels of antioxidant enzymes and antioxidants in systemic and local tissues, thereby reducing levels of oxidation products and cyto-inflammatory factors. The synergistic antioxidant and anti-inflammatory effects of DhHP-6 suggest that there are promising applications of this biomimetic enzyme molecular material for the next generation of agents for periodontitis therapy.

16.
J Neural Eng ; 19(6)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36541474

RESUMEN

Objective. Closed-loop transcranial ultrasound stimulation (TUS) can be applied at a specific time according to the state of neural activity to achieve timely and precise neuromodulation and improve the modulation effect. In a previous study, we found that closed-loop TUS at the peaks and troughs of the theta rhythm in the mouse hippocampus was able to increase the absolute power and decrease the relative power of the theta rhythm of local field potentials (LFPs) independent of the peaks and troughs of the stimulus. However, it remained unclear whether the modulation effect of this closed-loop TUS-induced mouse hippocampal neural oscillation depended on the peaks and troughs of the theta rhythm.Approach. In this study, we used ultrasound with different stimulation modes and durations to stimulate the peaks (peak stimulation) and troughs (trough stimulation) of the hippocampal theta rhythm. The LFPs in the area of ultrasound stimulation were recorded and the amplitudes and power spectra of the theta rhythm before and after ultrasound stimulation were analyzed.Main results. The results showed that (a) the relative change in amplitude of theta rhythm decreases as the number of stimulation trials under peak stimulation increases; (b) the relative change in the absolute power of the theta rhythm decreases as the number of stimulation trials under peak stimulation increases; (c) the relative change in amplitude of the theta rhythm increases nonlinearly with the stimulation duration (SD) under peak stimulation, and; (d) the relative change in absolute power exhibits a nonlinear increase with SD under peak stimulation.Significance. These results suggest that the modulation effect of closed-loop TUS on theta rhythm is dependent on the stimulation mode and duration under peak stimulation. TUS has the potential to precisely modulate theta rhythm-related neural activity.


Asunto(s)
Hipocampo , Ritmo Teta , Ratones , Animales , Hipocampo/fisiología , Ritmo Teta/fisiología
17.
RSC Adv ; 12(51): 32898-32902, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36425211

RESUMEN

Nanozyme is a material with enzyme-like catalytic activity, which has been widely used in environmental, antibacterial, and other fields of research. However, there are few reports on the toxicity of nanozymes. In this work, nanozymes co-assembled from sodium N-lauroyl sarcosinate (Ls) and Cu ions possess a Cu(i)-Cu(ii) electron transfer system similar to that of natural laccases. Reaction kinetic studies show that the catalyst follows a typical Michaelis-Menten model. Cu-N-lauroyl sarcosinate nanozyme (Cu-Ls NZ) possess excellent laccase-like activity to oxidize a variety of phenol-containing substrates, such as phenol, 4-iodophenol, and 2,4,5-trichlorophenol. To evaluate the toxicity of the material, the nematode C. elegans was exposed to various concentrations of Cu-Ls NZ. Effects on physiological levels were determined. The results showed that high doses of Cu-Ls NZ increased the amount of reactive oxygen species (ROS), decreased the locomotor activity of nematodes, and inhibited their larval growth.

18.
Molecules ; 27(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364248

RESUMEN

Accumulating evidence has shown that Parkinson's disease (PD) is a systemic disease other than a mere central nervous system (CNS) disorder. One of the most important peripheral symptoms is gastrointestinal dysfunction. The enteric nervous system (ENS) is regarded as an essential gateway to the environment. The discovery of the prion-like behavior of α-synuclein makes it possible for the neurodegenerative process to start in the ENS and spread via the gut-brain axis to the CNS. We first confirmed that synucleinopathies existed in the stomachs of chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid (MPTP/p)-induced PD mice, as indicated by the significant increase in abnormal aggregated and nitrated α-synuclein in the TH-positive neurons and enteric glial cells (EGCs) of the gastric myenteric plexus. Next, we attempted to clarify the mechanisms in single MPTP-injected mice. The stomach naturally possesses high monoamine oxidase-B (MAO-B) activity and low superoxide dismutase (SOD) activity, making the stomach susceptible to MPTP-induced oxidative stress, as indicated by the significant increase in reactive oxygen species (ROS) in the stomach and elevated 4-hydroxynonenal (4-HNE) in the EGCs after MPTP exposure for 3 h. Additionally, stomach synucleinopathies appear before those of the nigrostriatal system, as determined by Western blotting 12 h after MPTP injection. Notably, nitrated α-synuclein was considerably increased in the EGCs after 3 h and 12 h of MPTP exposure. Taken together, our work demonstrated that the EGCs could be new contributors to synucleinopathies in the stomach. The early-initiated synucleinopathies might further influence neighboring neurons in the myenteric plexus and the CNS. Our results offer a new experimental clue for interpreting the etiology of PD.


Asunto(s)
Intoxicación por MPTP , Enfermedad de Parkinson , Trastornos Parkinsonianos , Sinucleinopatías , Ratones , Animales , alfa-Sinucleína , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neuroglía , Estómago
19.
Front Neurosci ; 16: 994570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36161160

RESUMEN

Previous studies have demonstrated that open-loop transcranial ultrasound stimulation (TUS) can modulate theta and gamma rhythms of the local field potentials (LFPs) in the mouse hippocampus; however, the manner in which closed-loop TUS with different pressures based on phase-locking of theta rhythms modulates theta and gamma rhythm remains unclear. In this study, we established a closed-loop TUS system, which can perform closed-loop TUS by predicting the peaks and troughs of the theta rhythm. Comparison of the power, sample entropy and complexity, and phase-amplitude coupling (PAC) between the theta and gamma rhythms under peak and trough stimulation of the theta rhythm revealed the following: (1) the variation in the absolute power of the gamma rhythm and the relative power of the theta rhythm under TUS at 0.6-0.8 MPa differ between peak and trough stimulation; (2) the relationship of the sample entropy of the theta and gamma rhythms with ultrasound pressure depends on peak and trough stimulation; and (3) peak and trough stimulation affect the PAC strength between the theta and gamma rhythm as a function of ultrasound pressure. These results demonstrate that the modulation of the theta and gamma rhythms by ultrasound pressure depends on peak and trough stimulation of the theta rhythm in the mouse hippocampus.

20.
Stem Cells ; 40(11): 1043-1055, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36041430

RESUMEN

Midbrain dopamine (DA) neurons are associated with locomotor and psychiatric disorders. DA phenotype is specified in ancestral neural precursor cells (NPCs) and maintained throughout neuronal differentiation. Here we show that endogenous expression of MeCP2 coincides with DA phenotype specification in mouse mesencephalon, and premature expression of MeCP2 prevents in vitro cultured NPCs from acquiring DA phenotype through interfering NURR1 transactivation of DA phenotype genes. By contrast, ectopic MeCP2 expression does not disturb DA phenotype in the DA neurons. By analyzing the dynamic change of DNA methylation along DA neuronal differentiation at the promoter of DA phenotype gene tyrosine hydroxylase (Th), we show that Th expression is determined by TET1-mediated de-methylation of NURR1 binding sites within Th promoter. Chromatin immunoprecipitation assays demonstrate that premature MeCP2 dominates the DNA binding of the corresponding sites thereby blocking TET1 function in DA NPCs, whereas TET1-mediated de-methylation prevents excessive MeCP2 binding in DA neurons. The significance of temporal DNA methylation status is further confirmed by targeted methylation/demethylation experiments showing that targeted de-methylation in DA NPCs protects DA phenotype specification from ectopic MeCP2 expression, whereas targeted methylation disturbs phenotype maintenance in MeCP2-overexpressed DA neurons. These findings suggest the appropriate timing of MeCP2 expression as a novel determining factor for guiding NPCs into DA lineage.


Asunto(s)
Neuronas Dopaminérgicas , Proteína 2 de Unión a Metil-CpG , Células-Madre Neurales , Animales , Ratones , Diferenciación Celular/genética , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Células-Madre Neurales/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Fenotipo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...