Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(26): 33647-33656, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38898674

RESUMEN

Electrolyte engineering plays a crucial role in enhancing the performance of lithium metal batteries (LMBs) featuring high-voltage cathodes and limited lithium anodes, thereby unlocking their potential for high-energy electrochemical storage. Herein, an entropy-driven hybrid gel electrolyte with enhanced diversity in Li-ion solvation structures is designed by incorporating substantial amounts of insoluble LiPO2F2 and LiNO3 salts into LiPF6-based carbonate electrolytes, followed by in situ thermal polymerization. Specifically, the Li+ solvation structures are modulated via ionophilic NO3- and PO2F2- to generate an anion-rich solvation sheath and thus promote anion reduction at the electrode-electrolyte interface. The interfaces enriched in anion-derived inorganic components facilitate rapid ionic transport, thus enabling smooth and dense Li morphology and ultimately enhancing the electrochemical performance of LMBs. As a result, this high-hybrid gel electrolyte confers LMBs employing high-voltage NCM cathodes, as demonstrated by sustained performance in both coin-cell (500 cycles at 4.5 V) and Ah-level pouch cell configurations under practical conditions (60 cycles, N/P: 1.92, and E/C: 2.0 g Ah -1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...