Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(11): e2303817, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38166174

RESUMEN

Oxidative stress is a biochemical process that disrupts the redox balance due to an excess of oxidized substances within the cell. Oxidative stress is closely associated with a multitude of diseases and health issues, including cancer, diabetes, cardiovascular diseases, neurodegenerative disorders, inflammatory conditions, and aging. Therefore, the developing of antioxidant treatment strategies has emerged as a pivotal area of medical research. Hydrogels have garnered considerable attention due to their exceptional biocompatibility, adjustable physicochemical properties, and capabilities for drug delivery. Numerous antioxidant hydrogels have been developed and proven effective in alleviating oxidative stress. In the pursuit of more effective treatments for oxidative stress-related diseases, there is an urgent need for advanced strategies for the fabrication of multifunctional antioxidant hydrogels. Consequently, the authors' focus will be on hydrogels that possess exceptional reactive oxygen species and reactive nitrogen species scavenging capabilities, and their role in oxidative stress therapy will be evaluated. Herein, the antioxidant mechanisms and the design strategies of antioxidant hydrogels and their applications in oxidative stress-related diseases are discussed systematically in order to provide critical insights for further advancements in the field.


Asunto(s)
Antioxidantes , Hidrogeles , Estrés Oxidativo , Animales , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Hidrogeles/química , Estrés Oxidativo/efectos de los fármacos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Int J Biol Macromol ; 261(Pt 2): 129828, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296135

RESUMEN

Hydrogels have been widely used as wound dressings to accelerate wound healing. However, due to the impaired skin barrier at the wound site, external bacteria can easily invade the wound and cause infection. In this study, we designed a dopamine-modified sodium alginate/carboxymethyl chitosan/polyvinylpyrrolidone (CPD) hydrogel, which was able to promote wound healing while preventing wound infection. Due to the high content of catechol groups, the CPD hydrogel exhibited good tissue adhesion ability and a significant scavenging ability for DPPH• and PTIO• radicals. Under near-infrared laser irradiation, the temperature of CPD hydrogel increased significantly, which significantly killed the Staphylococcus aureus and Escherichia coli. The cell migration test confirmed that CPD hydrogel could promote the cell migration ratio. In the in vivo wound healing test for infected full-thickness skin defect, CPD hydrogel significantly inhibited bacterial proliferation and enhanced wound healing rate. Therefore, the multifunctional hydrogel is expected to be applied to wound healing.


Asunto(s)
Quitosano , Infección de Heridas , Humanos , Hidrogeles/farmacología , Quitosano/farmacología , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico , Alginatos , Escherichia coli , Rayos Infrarrojos , Antibacterianos/farmacología
3.
Biology (Basel) ; 12(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37626960

RESUMEN

Despite the growing knowledge concerning allelopathic interference with barnyard grass, little is understood regarding the competitive physiological mechanisms of the interaction between allelopathic rice and herbicide-resistant barnyard grass. A hydroponic system was employed to investigate the root morphological traits and different phytohormonal changes in allelopathic and non-allelopathic rice cultivars when co-planted with quinclorac-resistant and -susceptible barnyard grass, respectively. The results show that shoot and root biomass were greater in PI. Barnyard grass stress induced an increase in shoot and root biomass in PI at 7 and 14 days of co-culturing rice and barnyard grass. Especially under the stress of quinclorac-resistant barnyard grass, the shoot biomass of PI increased by 23% and 68%, respectively, and the root biomass increased by 37% and 34%, respectively. In terms of root morphology, PI exhibited a significantly higher fine-root length, in root diameters of <0.5 mm, a greater number of root tips, and longer root tips compared to LE. The response to quinclorac-resistant barnyard grass stress was consistent in terms of the SA and JA content. The obvious accumulation of SA and JA was observed in two rice cultivars under quinclorac-resistant barnyard grass stress, with greater amounts of SA and JA in PI. The significant decrease in auxin (IAA) and abscisic acid (ABA) content in rice was detected from 7 to 14 days under co-culture stress. Additionally, highly significant and positive correlations were found between SA and JA content, and the number of root tips and root tip length at root diameters of 0-0.5 mm in rice.

4.
Plants (Basel) ; 11(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736742

RESUMEN

Although barnyardgrass (Echinochloa crus-galli L.) is more competitive than rice (Oryza sativa L.) in the aboveground part, little is known about whether barnyardgrass is still competitive in recruiting endophytes and the root microbiota composition variation of rice under the barnyardgrass stress. Here, by detailed temporal characterization of root-associated microbiomes of rice plants during co-planted barnyardgrass stress and a comparison with the microbiomes of unplanted soil, we found that the bacterial community diversity of rice was dramatically higher while the fungal community richness was significantly lower than that of barnyardgrass at BBCH 45 and 57. More importantly, rice recruited more endophytic bacteria at BBCH 45 and 57, and more endophytic fungi at BBCH 17, 24, 37 to aginst the biotic stress from barnyardgrass. Principal coordinates analysis (PCoA) showed that rice and barnyardgrass had different community compositions of endophytic bacteria and fungi in roots. The PICRUSt predictive analysis indicated that majority of metabolic pathways of bacteria were overrepresented in barnyardgrass. However, eleven pathways were significantly presented in rice. In addition, rice and barnyardgrass harbored different fungal trophic modes using FUNGuild analysis. A negative correlation between bacteria and fungi in rice and barnyardgrass roots was found via network analysis. Actinobacteria was the vital bacteria in rice, while Proteobacteria dominated in barnyardgrass, and Ascomycota was the vital fungi in each species. These findings provided data and a theoretical basis for the in-depth understanding of the competition of barnyardgrass and endophytes and have implications relevant to weed prevention and control strategies using root microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...