Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3050, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237031

RESUMEN

Activation of tumor-intrinsic innate immunity has been a major strategy for improving immunotherapy. Previously, we reported an autophagy-promoting function of the deubiquitinating enzyme TRABID. Here, we identify a critical role of TRABID in suppressing anti-tumor immunity. Mechanistically, TRABID is upregulated in mitosis and governs mitotic cell division by removing K29-linked polyubiquitin chain from Aurora B and Survivin, thereby stabilizing the entire chromosomal passenger complex. TRABID inhibition causes micronuclei through a combinatory defect in mitosis and autophagy and protects cGAS from autophagic degradation, thereby activating the cGAS/STING innate immunity pathway. Genetic or pharmacological inhibition of TRABID promotes anti-tumor immune surveillance and sensitizes tumors to anti-PD-1 therapy in preclinical cancer models in male mice. Clinically, TRABID expression in most solid cancer types correlates inversely with an interferon signature and infiltration of anti-tumor immune cells. Our study identifies a suppressive role of tumor-intrinsic TRABID in anti-tumor immunity and highlights TRABID as a promising target for sensitizing solid tumors to immunotherapy.


Asunto(s)
Neoplasias , Nucleotidiltransferasas , Proteasas Ubiquitina-Específicas , Animales , Masculino , Ratones , Autofagia , Inmunidad Innata , Mitosis , Neoplasias/tratamiento farmacológico , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
3.
J Biomed Sci ; 29(1): 30, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538574

RESUMEN

BACKGROUND: Autophagy plays important roles in cell homeostasis and protein quality control. Long non-coding RNAs (lncRNAs) have been revealed as an emerging class of autophagy regulators, but the majority of them function in regulating the expression of autophagy-related genes. LncRNAs that directly act on the core autophagic proteins remain to be explored. METHODS: Immunofluorescence staining and Western blotting were used to evaluate the function of BCRP3 in autophagy and aggrephagy. RNA immunoprecipitation and in vitro RNA-protein binding assay were used to evaluate the interaction of BCRP3 with its target proteins. Phosphatidylinositol 3-phosphate ELISA assay was used to quantify the enzymatic activity of VPS34 complex. qRT-PCR analysis was used to determine BCRP3 expression under stresses, whereas mass spectrometry and Gene Ontology analyses were employed to evaluate the effect of BCRP3 deficiency on proteome changes. RESULTS: We identified lncRNA BCRP3 as a positive regulator of autophagy. BCRP3 was mainly localized in the cytoplasm and bound VPS34 complex to increase its enzymatic activity. In response to proteotoxicity induced by proteasome inhibition or oxidative stress, BCRP3 was upregulated to promote aggrephagy, thereby facilitating the clearance of ubiquitinated protein aggregates. Proteomics analysis revealed that BCRP3 deficiency under proteotoxicity resulted in a preferential accumulation of proteins acting in growth inhibition, cell death, apoptosis, and Smad signaling. Accordingly, BCRP3 deficiency in proteotoxic cells compromised cell proliferation and survival, which was mediated in part through the upregulation of TGF-ß/Smad2 pathway. CONCLUSIONS: Our study identifies BCRP3 as an RNA activator of the VPS34 complex and a key role of BCRP3-mediated aggrephagy in protein quality control and selective degradation of growth and survival inhibitors to maintain cell fitness.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III , ARN Largo no Codificante , Autofagia , Supervivencia Celular/genética , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteostasis , ARN Largo no Codificante/metabolismo
4.
Nat Commun ; 12(1): 1322, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637724

RESUMEN

The ubiquitin-proteasome system (UPS) and autophagy are two major quality control processes whose impairment is linked to a wide variety of diseases. The coordination between UPS and autophagy remains incompletely understood. Here, we show that ubiquitin ligase UBE3C and deubiquitinating enzyme TRABID reciprocally regulate K29/K48-branched ubiquitination of VPS34. We find that this ubiquitination enhances the binding of VPS34 to proteasomes for degradation, thereby suppressing autophagosome formation and maturation. Under ER and proteotoxic stresses, UBE3C recruitment to phagophores is compromised with a concomitant increase of its association with proteasomes. This switch attenuates the action of UBE3C on VPS34, thereby elevating autophagy activity to facilitate proteostasis, ER quality control and cell survival. Specifically in the liver, we show that TRABID-mediated VPS34 stabilization is critical for lipid metabolism and is downregulated during the pathogenesis of steatosis. This study identifies a ubiquitination type on VPS34 and elucidates its cellular fate and physiological functions in proteostasis and liver metabolism.


Asunto(s)
Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Hígado/metabolismo , Proteostasis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Animales , Autofagosomas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Dieta Alta en Grasa/efectos adversos , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética
5.
Sci Rep ; 9(1): 13703, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31548578

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) is predominantly expressed in neuron and plays an important role in neuronal physiology. Increasing evidence also indicates that Cdk5 may contribute to malignant progression of some types of cancers; however, the underlying mechanism remains elusive. In this study, we found that Cdk5 directly phosphorylated the actin-binding protein adducin-1 (ADD1) at T724 in vitro and in intact cells. The capability of the phosphomimetic T724D mutant to bind to actin filaments was lower than that of wild type ADD1 and the T724A mutant. Cdk5 co-localized with ADD1 at the lamellipodia upon epidermal growth factor (EGF) stimulation. The increased lamellipodia formation and cell migration of human breast cancer cells MDA-MB-231 by EGF were accompanied by Cdk5 activation and increased phosphorylation of ADD1 at T724. Depletion of Cdk5 in MDA-MB-231 cells abrogated the effects of EGF on ADD1 T724 phosphorylation, lamellipodia formation, and cell migration. Likewise, depletion of ADD1 suppressed the effects of EGF on lamellipodia formation, cell migration, and invasion, all of which were restored by FLAG-ADD1 WT and the T724D mutant, but not the T724A mutant. Together, our results suggest that phosphorylation of ADD1 at T724 by Cdk5 is important for EGF-induced cell migration and invasion.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Movimiento Celular/fisiología , Factor de Crecimiento Epidérmico/farmacología , Seudópodos/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Seudópodos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...