Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 187(7): 1651-1665.e21, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38490195

RESUMEN

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Lactobacillus , Neoplasias , Humanos , Lactobacillus/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Indoles/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
Cancer Lett ; 560: 216126, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36933780

RESUMEN

Maternal embryonic leucine zipper kinase (MELK) is a member of the AMPK (AMP-activated protein kinase) protein family, which is widely and highly expressed in multiple cancer types. Through direct and indirect interactions with other targets, it mediates various cascades of signal transduction processes and plays an important role in regulating tumor cell survival, growth, invasion and migration and other biological functions. Interestingly, MELK also plays an important role in the regulation of the tumor microenvironment, which can not only predict the responsiveness of immunotherapy, but also affect the function of immune cells to regulate tumor progression. In addition, more and more small molecule inhibitors have been developed for the target of MELK, which exert important anti-tumor effects and have achieved excellent results in a number of clinical trials. In this review, we outline the structural features, molecular biological functions, potential regulatory mechanisms and important roles of MELK in tumors and tumor microenvironment, as well as substances targeting MELK. Although many molecular mechanisms of MELK in the process of tumor regulation are still unknown, it is worth affirming that MELK is a potential tumor molecular therapeutic target, and its unique superiority and important role provide clues and confidence for subsequent basic research and scientific transformation.


Asunto(s)
Neoplasias , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Leucina Zippers , Proliferación Celular , Línea Celular Tumoral , Microambiente Tumoral
3.
Int J Biol Sci ; 18(1): 180-198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34975326

RESUMEN

Ferroptosis is a recently described mode of cell death caused by the accumulation of intracellular iron and lipid reactive oxygen species (ROS), which play critical roles in tumorigenesis and cancer progression. However, the underlying molecular mechanisms and promising biomarkers of ferroptosis among cancers remain to be elucidated. In this study, 30 ferroptosis regulators in ferroptosis-related signaling pathways were identified and analyzed in 33 cancer types. We found transcriptomic aberrations and evaluated the prognostic value of ferroptosis regulators across 33 cancer types. Then, we predicted and validated potential transcription factors (including E2F7, KLF5 and FOXM1) and therapeutic drugs (such as cyclophosphamide, vinblastine, and gefitinib) that target ferroptosis regulators in cancer. Moreover, we explored the molecular mechanisms of ferroptosis and found that signaling pathways such as the IL-1 and IL-2 pathways are closely associated with ferroptosis. Additionally, we found that ferroptosis regulators have a close relationship with immunity-related parameters, including the immune score, immune cell infiltration level, and immune checkpoint protein level. Finally, we determined a ferroptosis score using GSVA method. We found that the ferroptosis score effectively predicted ferroptotic cell death in tumor samples. And ferroptosis score is served as an independent prognostic indicator for the incidence and recurrence of cancers. More importantly, patients with high ferroptosis scores received greater benefit from immunotherapy. We aslo created an online webserver based on the nomogram prognostic model to predict the survival in immunotherapy cohort. The reason for this outcome is partially the result of patients with a high ferroptosis rate also having high immune scores, HLA-related gene expression and immune checkpoint protein expression, such as PDL2 and TIM3. Moreover, patients with high ferroptosis scores exhibited CD8 T cell and TIL infiltration and immune-related signaling pathway enrichment. In summary, we systematically summarize the molecular characteristics, clinical relevance and immune features of ferroptosis across cancers and show that the ferroptosis score can be used as a prognostic factor and for the evaluation of immunotherapy effects.


Asunto(s)
Ferroptosis/genética , Ferroptosis/inmunología , Inmunoterapia/métodos , Neoplasias , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Pronóstico , Mapas de Interacción de Proteínas , Transcriptoma
4.
Front Cell Dev Biol ; 9: 650748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869206

RESUMEN

Hepatocellular carcinoma (HCC) is highly malignant; nearly half of the new cases and deaths are in China. The poor prognosis of HCC is mainly due to late diagnosis; many new biomarkers have been developed for HCC diagnosis. However, few markers are quickly translated into clinical practice; early and differential diagnosis of HCC from cirrhosis and/or hepatitis is still a clinical challenge. Metabolomics and biochemical methods were used to reveal specific serum biomarkers of HCC. Most of the elevated metabolites in HCC and HBV patients were overlapped compared with controls. Urea was the specifically elevated serum biomarker of HCC patients. Moreover, urea combined with AFP and CEA can improve the sensitivity of HCC diagnosis. The plasma ammonia of HCC patients was significantly higher than healthy controls. Co-culture cell model revealed normal liver cells cooperated with cancer cells to metabolize ammonia into urea. The urea metabolism in cancer cells marginally depended on the expression of CPS1. However, the expression of CPS1 did not change with ammonium chloride, which might regulate the urea cycle through enzyme activity. The urea cycle could detoxify high concentrations of ammonia to promote cancer cell proliferation. Therefore, urea was a by-product of ammonia metabolism and could be a potential serum biomarker for HCC. The combined application of metabolomics and biochemical methods can discover new biomarkers for the early diagnosis of HCC and be quickly applied to clinical diagnosis.

5.
Arterioscler Thromb Vasc Biol ; 40(7): 1705-1721, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268790

RESUMEN

OBJECTIVE: A decrease in nitric oxide, leading to vascular smooth muscle cell proliferation, is a common pathological feature of vascular proliferative diseases. Nitric oxide synthesis by eNOS (endothelial nitric oxide synthase) is precisely regulated by protein kinases including AKT1. ENH (enigma homolog protein) is a scaffolding protein for multiple protein kinases, but whether it regulates eNOS activation and vascular remodeling remains unknown. Approach and Results: ENH was upregulated in injured mouse arteries and human atherosclerotic plaques and was associated with coronary artery disease. Neointima formation in carotid arteries, induced by ligation or wire injury, was greatly decreased in endothelium-specific ENH-knockout mice. Vascular ligation reduced AKT and eNOS phosphorylation and nitric oxide production in the endothelium of control but not ENH-knockout mice. ENH was found to interact with AKT1 and its phosphatase PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2). AKT and eNOS activation were prolonged in VEGF (vascular endothelial growth factor)-induced ENH- or PHLPP2-deficient endothelial cells. Inhibitors of either AKT or eNOS effectively restored ligation-induced neointima formation in ENH-knockout mice. Moreover, endothelium-specific PHLPP2-knockout mice displayed reduced ligation-induced neointima formation. Finally, PHLPP2 was increased in the endothelia of human atherosclerotic plaques and blood cells from patients with coronary artery disease. CONCLUSIONS: ENH forms a complex with AKT1 and its phosphatase PHLPP2 to negatively regulate AKT1 activation in the artery endothelium. AKT1 deactivation, a decrease in nitric oxide generation, and subsequent neointima formation induced by vascular injury are mediated by ENH and PHLPP2. ENH and PHLPP2 are thus new proatherosclerotic factors that could be therapeutically targeted.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Traumatismos de las Arterias Carótidas/enzimología , Arteria Carótida Común/enzimología , Proteínas de Microfilamentos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Remodelación Vascular , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Aterosclerosis/enzimología , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/fisiopatología , Arteria Carótida Común/patología , Arteria Carótida Común/fisiopatología , Células Cultivadas , Enfermedad de la Arteria Coronaria/enzimología , Enfermedad de la Arteria Coronaria/patología , Enfermedad de la Arteria Coronaria/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/genética , Neointima , Óxido Nítrico/metabolismo , Fosfoproteínas Fosfatasas/deficiencia , Fosfoproteínas Fosfatasas/genética , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA