Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Genomics ; 2024: 3256694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304730

RESUMEN

Aim: To investigate the specific expression profile, clinicopathological significance and mechanism of Zic family member 2 (ZIC2) in oral cancer were unclear. Patients and Methods. We explored the expression pattern and clinicopathological significance of ZIC2 in oral cancer through performing in-house tissue microarray and integrated analysis global RNA-seq and microarrays containing large samples. The molecular basis of ZIC2 in oral cancer was further investigated in the aspects of transcription network and immune correlations. We also performed in vitro experiments and calculated drug sensitivity of oral cancer with different ZIC2 expression levels in response to hundreds of compounds. Results: All data unanimously proved the significant overexpression of ZIC2 in oral cancer. The upregulation of ZIC2 was remarkably associated with the malignant clinical progression of oral cancer. ZIC2 was predicted to be targeted by miRNAs such as miR-3140, miR-4999, and miR-1322. The infiltration level of CD8+ T and central memory cells was positively related to the overexpression of ZIC2. Oral cancer patients with higher ZIC2 expression showed higher drug sensitivity to two compounds including AZD8186 and ERK_2240. Conclusions: We demonstrated the upregulation of ZIC2 in oral cancer and its promoting effect on the clinical advancement of oral cancer. The potential clinical value of ZIC2 in oral cancer deserves attention.

2.
Pathol Res Pract ; 247: 154534, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201466

RESUMEN

Laryngeal squamous cell carcinoma (LSCC) is the most lethal cancer in head and neck tumors. Although hematopoietic cell kinase (HCK) has been proven to be an oncogene in several solid tumors, its roles in LSCC remain obscure. This is the first study to evaluate the clinical value of HCK in LSCC, with the aim of exploring its expression status and potential molecular mechanisms underlying LSCC. LSCC tissue-derived gene chips and RNA-seq data were collected for a quantitive integration of HCK mRNA expression level. To confirm the protein expression level of HCK, a total of 82 LSCC tissue specimens and 56 non-tumor laryngeal epithelial controls were collected for in-house tissue microarrays and immunohistochemical staining. Kaplan-Meier curves were generated to determine the ability of HCK in predicting overall survival, progress-free survival, and disease-free survival of LSCC patients. LSCC overexpressed genes and HCK co-expressed genes were intersected to preliminarily explore the enriched signaling pathways of HCK. It was noticed that HCK mRNA was markedly overexpressed in 323 LSCC tissues compared with 196 non-LSCC controls (standardized mean difference = 0.81, p < 0.0001). Upregulated HCK mRNA displayed a moderate discriminatory ability between LSCC tissues and non-tumor laryngeal epithelial controls (area under the curve = 0.78, sensitivity = 0.76, specificity = 0.68). The higher expression level of HCK mRNA could predict worse overall survival and disease-free survival for LSCC patients (p = 0.041 and p = 0.013). Lastly, upregulated co-expression genes of HCK were significantly enriched in leukocyte cell-cell adhesion, secretory granule membrane, and extracellular matrix structural constituent. Immune-related pathways were the predominantly activated signals, such as cytokine-cytokine receptor interaction, Th17 cell differentiation, and Toll-like receptor signaling pathway. In conclusion, HCK was upregulated in LSCC tissues and could be utilized as a risk predictor. HCK may promote the development of LSCC by disturbing immune signaling pathways.


Asunto(s)
Neoplasias Laríngeas , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , Pronóstico , Proteínas Proto-Oncogénicas c-hck/genética , Proteínas Proto-Oncogénicas c-hck/metabolismo , ARN Mensajero/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
3.
BMC Cardiovasc Disord ; 23(1): 163, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978012

RESUMEN

BACKGROUND: To investigate the potential role of immune-related genes (IRGs) and immune cells in myocardial infarction (MI) and establish a nomogram model for diagnosing myocardial infarction. METHODS: Raw and processed gene expression profiling datasets were archived from the Gene Expression Omnibus (GEO) database. Differentially expressed immune-related genes (DIRGs), which were screened out by four machine learning algorithms-partial least squares (PLS), random forest model (RF), k-nearest neighbor (KNN), and support vector machine model (SVM) were used in the diagnosis of MI. RESULTS: The six key DIRGs (PTGER2, LGR6, IL17B, IL13RA1, CCL4, and ADM) were identified by the intersection of the minimal root mean square error (RMSE) of four machine learning algorithms, which were screened out to establish the nomogram model to predict the incidence of MI by using the rms package. The nomogram model exhibited the highest predictive accuracy and better potential clinical utility. The relative distribution of 22 types of immune cells was evaluated using cell type identification, which was done by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. The distribution of four types of immune cells, such as plasma cells, T cells follicular helper, Mast cells resting, and neutrophils, was significantly upregulated in MI, while five types of immune cell dispersion, T cells CD4 naive, macrophages M1, macrophages M2, dendritic cells resting, and mast cells activated in MI patients, were significantly downregulated in MI. CONCLUSION: This study demonstrated that IRGs were correlated with MI, suggesting that immune cells may be potential therapeutic targets of immunotherapy in MI.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Humanos , Análisis por Conglomerados , Bases de Datos Factuales , Aprendizaje Automático , Biomarcadores
4.
Front Integr Neurosci ; 16: 854540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928585

RESUMEN

Cyclin B2 (CCNB2) belongs to type B cell cycle family protein, which is located on chromosome 15q22, and it binds to cyclin-dependent kinases (CDKs) to regulate their activities. In this study, 103 high-throughput datasets related to all subtypes of lung cancer (LC) and cerebral ischemic stroke (CIS) with the data of CCNB2 expression were collected. The analysis of standard mean deviation (SMD) and summary receiver operating characteristic (SROC) reflecting expression status demonstrated significant up-regulation of CCNB2 in LC and CIS (Lung adenocarcinoma: SMD = 1.40, 95%CI [0.98-1.83], SROC = 0.92, 95%CI [0.89-0.94]. Lung squamous cell carcinoma: SMD = 2.56, 95%CI [1.64-3.48]. SROC = 0.97, 95%CI [0.95-0.98]. Lung small cell carcinoma: SMD = 3.01, 95%CI [2.01-4.01]. SROC = 0.98, 95%CI [0.97-0.99]. CIS: SMD = 0.29, 95%CI [0.05-0.53], SROC = 0.68, 95%CI [0.63-0.71]). Simultaneously, protein-protein interaction (PPI) analysis indicated that CCNB2 is the hub molecule of crossed high-expressed genes in CIS and LC. Through Multiscale embedded gene co-expression network analysis (MEGENA), a gene module of CIS including 76 genes was obtained and function enrichment analysis of the CCNB2 module genes implied that CCNB2 may participate in the processes in the formation of CIS and tissue damage caused by CIS, such as "cell cycle," "protein kinase activity," and "glycosphingolipid biosynthesis." Afterward, via single-cell RNA-seq analysis, CCNB2 was found up-regulated on GABAergic neurons in brain organoids as well as T cells expressing proliferative molecules in LUAD. Concurrently, the expression of CCNB2 distributed similarly to TOP2A as a module marker of cell proliferation in cell cluster. These findings can help in the field of the pathogenesis of LC-related CIS and neuron repair after CIS damage.

5.
BMC Cardiovasc Disord ; 22(1): 314, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840880

RESUMEN

OBJECTIVE: The prevalence and mortality of cardiovascular diseases remain ranked first worldwide. Myocardial infarction (MI) is the central cause of death from cardiovascular diseases, seriously endangering human health. The clinical implication of toll-like receptor 2 (TLR2) remains contradictory, and its mechanism is still unknown. Hence, the objective of this study was to elucidate the clinical value and molecular mechanism of TLR2 in MI. METHODS: All high-throughput datasets and eligible literature were screened, and the expression levels of TLR2 were collected from the MI. The integrated expression level of TLR2 was displayed by calculating the standardized mean difference (SMD) and the area under the curve (AUC) of the summary receiver operating characteristic curve (sROC). The related TLR2 genes were sent for pathway analyses by gene ontology (GO), Kyoto encyclopedia of genes and genome (KEGG), and disease ontology (DO). Single-cell RNA-seq was applied to ascertain the molecular mechanism of TLR2 in MI. RESULTS: Nine microarrays and four reported data were available to calculate the comprehensive expression level of TLR2 in MI, including 325 cases of MI and 306 cases of controls. The SMD was 2.55 (95% CI = 1.35-3.75), and the AUC was 0.76 (95% CI = 0.72-0.79), indicating the upregulation of TLR2 in MI. The related TLR2 genes were primarily enriched in the pathways of atherosclerosis, arteriosclerotic cardiovascular disease, and arteriosclerosis, suggesting the clinical role of TLR2 in the progression of MI. Afterward, TLR2 was upregulated in myeloid cells in MI. CONCLUSIONS: TLR2 may have a crucial role in progressing from coronary atherosclerosis to MI. The upregulation of TLR2 may have a favorable screening value for MI.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Receptor Toll-Like 2 , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Ontología de Genes , Humanos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Regulación hacia Arriba
6.
Med Sci Monit ; 26: e920725, 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32214060

RESUMEN

BACKGROUND Wilms tumor, or nephroblastoma, is a malignant pediatric embryonal renal tumor that has a poor prognosis. This study aimed to use bioinformatics data, RNA-sequencing, connectivity mapping, molecular docking, and ligand-protein binding to identify potential targets for drug therapy in Wilms tumor. MATERIAL AND METHODS Wilms tumor and non-tumor samples were obtained from high throughput gene expression databases, and differentially expressed genes (DEGs) were analyzed using the voom method in the limma package. The overlapping DEGs were obtained from the intersecting drug target genes using the Connectivity Map (CMap) database, and systemsDock was used for molecular docking. Gene databases were searched for gene expression profiles for complementary analysis, analysis of clinical significance, and prognosis analysis to refine the study. RESULTS From 177 cases of Wilms tumor, there were 648 upregulated genes and 342 down-regulated genes. Gene Ontology (GO) enrichment analysis showed that the identified DEGs that affected the cell cycle. After obtaining 21 candidate drugs, there were seven overlapping genes with 75 drug target genes and DEGs. Molecular docking results showed that relatively high scores were obtained when retinoic acid and the cyclin-dependent kinase inhibitor, alsterpaullone, were docked to the overlapping genes. There were significant standardized mean differences for three overlapping genes, CDK2, MAP4K4, and CRABP2. However, four upregulated overlapping genes, CDK2, MAP4K4, CRABP2, and SIRT1 had no prognostic significance. CONCLUSIONS RNA-sequencing, connectivity mapping, and molecular docking to investigate ligand-protein binding identified retinoic acid and alsterpaullone as potential drug candidates for the treatment of Wilms tumor.


Asunto(s)
Antineoplásicos/uso terapéutico , Evaluación Preclínica de Medicamentos , Simulación del Acoplamiento Molecular , Análisis de Secuencia de ARN , Tumor de Wilms/tratamiento farmacológico , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Estimación de Kaplan-Meier , Ligandos , Pronóstico , Unión Proteica , Curva ROC , Tumor de Wilms/genética
7.
BMC Med Genomics ; 13(1): 3, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906958

RESUMEN

BACKGROUND: MiR-182-5p, a cancer-related microRNA (miRNA), modulates tumorigenesis and patient outcomes in various human malignances. This study interroted the clinicopathological significance and molecular mechanisms of miR-182-5p in non-small cell lung cancer (NSCLC). METHODS: The clinical significance of miR-182-5p in NSCLC subtypes was determined based on an analysis of 124 samples (lung adenocarcinomas [LUADs], n = 101; lung squamous cell carcinomas [LUSCs], n = 23) obtained from NSCLC patients and paired noncancer tissues and an analysis of data obtained from public miRNA-seq database, miRNA-chip database, and the scientific literature. The NSCLC samples (n = 124) were analyzed using the real-time quantitative polymerase chain reaction (RT-qPCR). Potential targets of miR-182-5p were identified using lists generated by miRWalk v.2.0, a comprehensive atlas of predicted and validated targets of miRNA-target interactions. Molecular events of miR-182-5p in NSCLC were unveiled based on a functional analysis of candidate targets. The association of miR-182-5p with one of the candidate target genes, homeobox A9 (HOXA9), was validated using in-house RT-qPCR and dual-luciferase reporter assays. RESULTS: The results of the in-house RT-qPCR assays analysis of data obtained from public miRNA-seq databases, miRNA-chip databases, and the scientific literature all supported upregulation of the expression level of miR-182-5p level in NSCLC. Moreover, the in-house RT-qPCR data supported the influence of upregulated miR-182-5p on malignant progression of NSCLC. In total, 774 prospective targets of miR-182-5p were identified. These targets were mainly clustered in pathways associated with biological processes, such as axonogenesis, axonal development, and Ras protein signal transduction, as well as pathways involved in axonal guidance, melanogenesis, and longevity regulation, in multiple species. Correlation analysis of the in-house RT-qPCR data and dual-luciferase reporter assays confirmed that HOXA9 was a direct target of miR-182-5p in NSCLC. CONCLUSIONS: The miR-182-5p expression level was upregulated in NSCLC tissues. MiR-182-5p may exert oncogenic influence on NSCLC through regulating target genes such as HOXA9.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteínas de Homeodominio , Neoplasias Pulmonares , MicroARNs , Proteínas de Neoplasias , ARN Neoplásico , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Simulación por Computador , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...