Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Food Chem ; 460(Pt 3): 140754, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39121762

RESUMEN

The determination of biogenic amines (BAs) in alcoholic beverages is crucial for assessing their health impact, ensuring beverage quality, and guaranteeing safety. Herein, a rapid one-pot derivatization/magnetic solid-phase extraction (OPD/MSPE) method was proposed using 6-aminoquinolinyl-N-hydroxysuccinimide carbamate as the derivatization reagent and magnetic hydroxyl-functionalized multi-walled carbon nanotubes as the extraction material. Integration of derivatization and extraction steps simplifies the sample preparation process, taking only three minutes and eliminating the need for centrifugation by utilizing magnetic sorbent. The resulting desorption solution was directly analyzed by high-performance liquid chromatography-fluorescence detection (HPLC-FLD) without any evaporation or reconstitution steps. The integrated OPD/MSPE-HPLC-FLD method demonstrates excellent linearity (R2 > 0.992), accuracy (relative recoveries: 85.1-109.2%), precision (RSDs≤9.7%) and detection limits (limits of detection: 0.3-2 ng/mL). It has been successfully applied to determine free BAs in various alcoholic beverages, including red wine, Baijiu, Huangjiu, and beer. This method enables rapid, sensitive and precise analysis of BAs in alcoholic beverages.

2.
Adv Sci (Weinh) ; : e2403161, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049720

RESUMEN

Nasopharyngeal carcinoma (NPC), a squamous cell carcinoma originating in the nasopharynx, is a leading malignancy in south China and other south and east Asia areas. It is frequently associated with Epstein-Barr virus (EBV) infection, while there are also some NPC patients without EBV infection. Here, it is shown that the EBV+ (EBV positive) and EBV- (EBV negative) NPCs contain both shared and distinct genetic abnormalities, among the latter are increased mutations in TP53. To investigate the functional roles of NPC-associated genetic alterations, primary, orthotopic, and genetically defined NPC models were developed in mice, a key tool missed in the field. These models, initiated with gene-edited organoids of normal nasopharyngeal epithelium, faithfully recapitulated the pathological features of human disease. With these models, it is found that Trp53 and Cdkn2a deficiency are crucial for NPC initiation and progression. And latent membrane protein1 (LMP1), an EBV-coding oncoprotein, significantly promoted the distal metastasis. Further, loss of TGFBR2, which is frequently disrupted both in EBV- and EBV+ NPCs, dramatically accelerated the progression and lung metastasis of NPC probably by altering tumor microenvironment. Taken together, this work establishes a platform to dissect the genetic mechanisms underlying NPC pathogenesis and might be of value for future translational studies.

3.
EJHaem ; 5(3): 462-473, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895088

RESUMEN

Numerous clinical studies speculated the association between multiple myeloma (MM) and inflammatory diseases; however, there is limited validation of these claims via establishing a causal relationship and revealing the underlying mechanism. This exploratory study employed bidirectional Mendelian randomization (MR) analysis to investigate the causal relationships between MM and inflammatory diseases, including atherosclerosis, asthma, ankylosing spondylitis, Alzheimer's disease (AD), Parkinson's disease (PD), sarcoidosis, inflammatory bowel disease, nonalcoholic fatty liver disease, type II diabetes, and schizophrenia (SZ). Transcriptomic and genome-wide Bayesian colocalization analyses were further applied to reveal the underlying mechanism. A significant and previously unrecognized positive association was identified between genetic predisposition to MM and the risk of SZ. Two independent case reports showed that treatment-resistant psychosis is due to underlying MM and is resolved by treating MM. From our MR analyses, various statistical methods confirmed this association without detecting heterogeneity or pleiotropy effects. Transcriptomic analysis revealed shared inflammation-relevant pathways in MM and SZ patients, suggesting inflammation as a potential pathophysiological mediator of MM's causal effect on SZ. Bayesian colocalization analysis identified rs9273086, which maps to the protein-coding region of HLA-DRB1, as a common risk variant for both MM and SZ. Polymorphism of the HLA-DRB1 allele has been implicated in AD and PD, further highlighting the impact of our results. Additionally, we confirmed that interleukin-6 (IL-6) is a risk factor for SZ through secondary MR, reinforcing the role of neuroinflammation in SZ etiology. Overall, our findings showed that genetic predisposition to MM, HLA-DRB1 polymorphism, and enhanced IL-6 signaling are associated with the increased risk of SZ, providing evidence for a causal role for neuroinflammation in SZ etiology.

4.
J Pathol ; 263(3): 372-385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38721894

RESUMEN

Small cell cervical carcinoma (SCCC) is the most common neuroendocrine tumor in the female genital tract, with an unfavorable prognosis and lacking an evidence-based therapeutic approach. Until now, the distinct subtypes and immune characteristics of SCCC combined with genome and transcriptome have not been described. We performed genomic (n = 18), HPV integration (n = 18), and transcriptomic sequencing (n = 19) of SCCC samples. We assessed differences in immune characteristics between SCCC and conventional cervical cancer, and other small cell neuroendocrine carcinomas, through bioinformatics analysis and immunohistochemical assays. We stratified SCCC patients through non-negative matrix factorization and described the characteristics of these distinct types. We further validated it using multiplex immunofluorescence (n = 77) and investigated its clinical prognostic effect. We confirmed a high frequency of PIK3CA and TP53 alterations and HPV18 integrations in SCCC. SCCC and other small cell carcinoma had similar expression signatures and immune cell infiltration patterns. Comparing patients with SCCC to those with conventional cervical cancer, the former presented immune excluded or 'desert' infiltration. The number of CD8+ cells in the invasion margin of SCCC patients predicted favorable clinical outcomes. We identified three transcriptome subtypes: an inflamed phenotype with high-level expression of genes related to the MHC-II complex (CD74) and IFN-α/ß (SCCC-I), and two neuroendocrine subtypes with high-level expression of ASCL1 or NEUROD1, respectively. Combined with multiple technologies, we found that the neuroendocrine groups had more TP53 mutations and SCCC-I had more PIK3CA mutations. Multiplex immunofluorescence validated these subtypes and SCCC-I was an independent prognostic factor of overall survival. These results provide insights into SCCC tumor heterogeneity and potential therapies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Neuroendocrino , Microambiente Tumoral , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/inmunología , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/mortalidad , Carcinoma de Células Pequeñas/genética , Carcinoma de Células Pequeñas/inmunología , Carcinoma de Células Pequeñas/patología , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Adulto , Mutación , Transcriptoma , Fosfatidilinositol 3-Quinasa Clase I/genética , Pronóstico , Perfilación de la Expresión Génica/métodos , Anciano , Multiómica
5.
Cancer Imaging ; 24(1): 38, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38504330

RESUMEN

OBJECTIVE: To investigate the diagnostic value of dual-energy computed tomography (DECT) quantitative parameters in the identification of regional lymph node metastasis in pancreatic ductal adenocarcinoma (PDAC). METHODS: This retrospective diagnostic study assessed 145 patients with pathologically confirmed pancreatic ductal adenocarcinoma from August 2016-October 2020. Quantitative parameters for targeted lymph nodes were measured using DECT, and all parameters were compared between benign and metastatic lymph nodes to determine their diagnostic value. A logistic regression model was constructed; the receiver operator characteristics curve was plotted; the area under the curve (AUC) was calculated to evaluate the diagnostic efficacy of each energy DECT parameter; and the DeLong test was used to compare AUC differences. Model evaluation was used for correlation analysis of each DECT parameter. RESULTS: Statistical differences in benign and metastatic lymph nodes were found for several parameters. Venous phase iodine density had the highest diagnostic efficacy as a single parameter, with AUC 0.949 [95% confidence interval (CI):0.915-0.972, threshold: 3.95], sensitivity 79.80%, specificity 96.00%, and accuracy 87.44%. Regression models with multiple parameters had the highest diagnostic efficacy, with AUC 0.992 (95% CI: 0.967-0.999), sensitivity 95.96%, specificity 96%, and accuracy 94.97%, which was higher than that for a single DECT parameter, and the difference was statistically significant. CONCLUSION: Among all DECT parameters for regional lymph node metastasis in PDAC, venous phase iodine density has the highest diagnostic efficacy as a single parameter, which is convenient for use in clinical settings, whereas a multiparametric regression model has higher diagnostic value compared with the single-parameter model.


Asunto(s)
Carcinoma Ductal Pancreático , Yodo , Neoplasias Pancreáticas , Humanos , Metástasis Linfática/patología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología
6.
Food Chem X ; 21: 101090, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38226323

RESUMEN

Consuming foods with excess sulfonamide residues threatens human health, underscoring the importance of their detection in food. This study presents an innovative one-pot derivatization/magnetic solid-phase extraction (OPD/MSPE) method for sulfonamides analysis. This approach integrates the derivatization and extraction steps into a single process. The sample solution, along with the derivatization reagent fluorescamine and the sorbent magnetic hydroxyl multi-walled carbon nanotubes, is mixed and vortexed for 3 min. This procedure simultaneously conducts derivatization and extraction, with easy phase separation using an external magnet. This streamlined sample preparation method is completed in only 5 min and, when combined with liquid chromatography-fluorescence detection (LC-FLD), demonstrates excellent linearity (R2 > 0.99) and satisfactory detection limits (0.004-0.04 ng/g) for the quantification of nine sulfonamides in honey samples. The proposed OPD/MSPE-LC-FLD method is distinguished by its simplicity, rapidity, high sensitivity, and specificity, making it an outstanding advancement in the field of food safety analysis.

7.
Cancer Commun (Lond) ; 43(7): 788-807, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37282786

RESUMEN

BACKGROUND: Existing treatments for cholangiocarcinoma have poor efficacy. However, chimeric antigen receptor-T (CAR-T) cells are emerging as a potential therapeutic strategy. Solid tumors possess multiple adverse factors in an immunosuppressive microenvironment that impair CAR-T cell infiltration and function. This study aimed to improve the function of CAR-T cells through knock down immune checkpoints and immunosuppressive molecular receptors. METHODS: We evaluated the expression of epidermal growth factor receptor (EGFR) and B7 homolog 3 protein (B7H3) antigens in cholangiocarcinoma tissues using immunohistochemistry and screened specific immune checkpoints in the cholangiocarcinoma microenvironment via flow cytometry. Subsequently, we engineered CAR-T cells targeting EGFR and B7H3 antigens. We simultaneously knocked down immune checkpoints and immunosuppressive molecular receptors in CAR-T cells by constructing two clusters of small hairpin RNAs and evaluated the engineered CAR-T cells for antitumor activity both in vitro, using tumor cell lines and cholangiocarcinoma organoid models, and in vivo, using humanized mouse models. RESULTS: We observed high expression of EGFR and B7H3 antigens in cholangiocarcinoma tissues. EGFR-CAR-T and B7H3-CAR-T cells demonstrated specific anti-tumor activity. We found an abundance of programmed cell death protein 1 (PD-1), T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3), and T cell immunoglobulin and ITIM domain (Tigit) on infiltrated CD8+ T cells in the cholangiocarcinoma microenvironment. We then decreased the expression of these 3 proteins on the surface of CAR-T cells, named PTG-scFV-CAR-T cells. Furthermore, we knocked-down the expression of transforming growth factor beta receptor (TGFßR), interleukin-10 receptor (IL-10R), and interleukin-6 receptor (IL-6R) of PTG-scFV-CAR-T cells. Those cells, named PTG-T16R-scFV-CAR-T cells, potently killed tumor cells in vitro and promoted apoptosis of tumor cells in a cholangiocarcinoma organoid model. Finally, the PTG-T16R-scFv-CAR-T cells showed greater inhibitory effect on tumor growth in vivo, and were superior in prolonging the survival of mice. CONCLUSIONS: Our results revealed that PTG-T16R-scFV-CAR-T cells with knockdown of sextuplet inhibitory molecules exhibited strong immunity against cholangiocarcinoma and long-term efficacy both in vitro and in vivo. This strategy provides an effective and personalized immune cell therapy against cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Receptores Quiméricos de Antígenos , Animales , Ratones , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas de la Membrana , Ensayos Antitumor por Modelo de Xenoinjerto , Colangiocarcinoma/genética , Colangiocarcinoma/terapia , Receptores ErbB/genética , Inmunosupresores , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/terapia , Conductos Biliares Intrahepáticos/metabolismo , Inmunoglobulinas , Microambiente Tumoral
8.
Se Pu ; 41(3): 207-223, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-36861204

RESUMEN

Ciwujia injection is commonly used to treat cerebrovascular and central nervous system diseases in clinical practice. It can significantly improve blood lipid levels and endothelial cell function in patients with acute cerebral infarction and promote the proliferation of neural stem cells in cerebral ischemic brain tissues. The injection has also been reported to have good curative effects on cerebrovascular diseases, such as hypertension and cerebral infarction. At present, the material basis of Ciwujia injection remains incompletely understood, and only two studies have reported dozens of components, which were determined using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS). Unfortunately, the lack of research on this injection restricts the in-depth study of its therapeutic mechanism.In the present study, a qualitative method based on ultra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS) was developed to analyze the chemical components of Ciwujia injection. Separation was performed on a BEH Shield RP18 column (100 mm×2.1 mm, 1.7 µm) using 0.1% formic acid aqueous solution (A) and acetonitrile (B) as the mobile phases, and gradient elution was performed as follows: 0-2 min, 0%B; 2-4 min, 0%B-5%B; 4-15 min, 5%B-20%B; 15-15.1 min, 20%B-90%B; 15.1-17 min, 90%B. The flow rate and column temperature were set to 0.4 mL/min and 30 ℃ respectively. MS1 and MS2 data were acquired in both positive- and negative-ion modes using a mass spectrometer equipped with an HESI source. For data post-processing, a self-built library including component names, molecular formulas, and chemical structures was established by collecting information on the isolated chemical compounds of Acanthopanax senticosus. The chemical components of the injection were identified by comparison with standard compounds or MS2 data in commercial databases or literature based on precise relative molecular mass and fragment ion information. The fragmentation patterns were also considered. For example, the MS2 data of 3-caffeoylquinic acid (chlorogenic acid), 4-caffeoylquinic acid (cryptochlorogenic acid), and 5-caffeoylquinic acid (neochlorogenic acid) were first analyzed. The results indicated that these compounds possessed similar fragmentation behaviors, yielding product ions at m/z 173 and m/z 179 simultaneously. However, the abundance of the product ion at m/z 173 was much higher in 4-caffeoylquinic acid than in 5-caffeoylquinic acid or 3-caffeoylquinic acid, and the fragment signal at m/z 179 was much stronger for 5-caffeoylquinic acid than for 3-caffeoylquinic acid. Four caffeoylquinic acids were identified using a combination of abundance information and retention times. MS2 data in commercial database and literature were also used to identify unknown constituents. For example, compound 88 was successfully identified as possessing a relative molecular mass and neutral losses similar to those of sinapaldehyde using the database, and compound 80 was identified as salvadoraside because its molecular and fragmentation behaviors were consistent with those reported in the literature. A total of 102 constituents, including 62 phenylpropanoids, 23 organic acids, 7 nucleosides, 1 iridoid, and 9 other compounds, were identified. The phenylpropanoids can be further classified as phenylpropionic acids, phenylpropanols, benzenepropanals, coumarins, and lignans. Among the detected compounds, 16 compounds were confirmed using reference compounds and 65 compounds were identified in Ciwujia injection for the first time. This study is the first to report the feasibility of using the UHPLC-Q/Orbitrap HRMS method to quickly and comprehensively analyze the chemical components of Ciwujia injection. The 27 newly discovered phenylpropanoids provide further material basis for the clinical treatment of neurological diseases and new research targets for the in-depth elucidation of the pharmacodynamic mechanism of Ciwujia injection and its related preparations.


Asunto(s)
Eleutherococcus , Humanos , Cromatografía Líquida de Alta Presión , Ácido Clorogénico , Electricidad Estática
9.
Clin Transl Oncol ; 25(1): 256-268, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36115931

RESUMEN

PURPOSE: Checkpoint immunotherapy is a promising treatment option for advanced cervical cancer. To aid in selecting patients for this treatment, we identified potential predictors of the response to anti-PD-1 combination therapy. METHODS: We simultaneously characterized CD8+, FoxP3+, PD-L1+, CD68+, CD31+, PANCK+, and PANCK-PD-L1+ cells at the invasive margin (IM) of tumor by multispectral imaging of tissue sections from 37 patients with advanced cervical cancer in our previous trial cohort. The densities of each cell and cell-to-cell topography were compared between the responder and non-responder groups and evaluated for their predictive value in clinical response and survival. RESULTS: CD8+ T cells, PD-L1+ cells, and PANCK-PD-L1+ immune cells showed higher densities at the IM in the responders than in the non-responders (P = 0.022, 0.0094, and 0.049, respectively). A higher density of CD8+ T cells at the IM was related to prolonged progression-free survival (PFS; P = 0.031). A higher ratio of CD68+/CD8+ cells was found in the non-responder group (P = 0.003) and related to poor PFS (P = 0.016). A higher density of PANCK-PD-L1+ immune cells within 20, 30, and 45 µm of PANCK+ tumor cells was correlated with better clinical response (P = 0.017, 0.017, and 0.02, respectively). CONCLUSIONS: Multiparametric immune profiling of CD8+ T cells, PD-L1+ cells, CD68+ macrophages and PANCK-PD-L1+ immune cells at the invasive margin may help identify patients with cervical cancer who may benefit from anti-PD-1 combination therapy. CLINICAL TRIAL REGISTRATION: ClinicalTrials. gov identifier: NCT03816553, January 25, 2019.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias del Cuello Uterino , Femenino , Humanos , Antígeno B7-H1 , Linfocitos Infiltrantes de Tumor , Supervivencia sin Progresión , Neoplasias del Cuello Uterino/tratamiento farmacológico
10.
Cancer Cell Int ; 22(1): 251, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35948974

RESUMEN

BACKGROUND: The prognosis of non-small cell lung cancer (NSCLC) with brain metastases (BMs) had been researched in some researches, but the combination of clinical characteristics and serum inflammatory indexes as a noninvasive and more accurate model has not been described. METHODS: We retrospectively screened patients with BMs at the initial diagnosis of NSCLC at Sun Yat-Sen University Cancer Center. LASSO-Cox regression analysis was used to establish a novel prognostic model for predicting OS based on blood biomarkers. The predictive accuracy and discriminative ability of the prognostic model was compared to Adjusted prognostic Analysis (APA), Recursive Partition Analysis (RPA), and Graded Prognostic Assessment (GPA) using concordance index (C-index), time-dependent receiver operating characteristic (td-ROC) curve, Decision Curve Analysis(DCA), net reclassification improvement index (NRI), and integrated discrimination improvement index (IDI). RESULTS: 10-parameter signature's predictive model for the NSCLC patients with BMs was established according to the results of LASSO-Cox regression analysis. The C-index of the prognostic model to predict OS was 0.672 (95% CI = 0.609 ~ 0.736) which was significantly higher than APA,RPA and GPA. The td-ROC curve and DCA of the predictive model also demonstrated good predictive accuracy of OS compared to APA, RPA and GPA. Moreover, NRI and IDI analysis indicated that the prognostic model had improved prediction ability compared with APA, RPA and GPA. CONCLUSION: The novel prognostic model demonstrated favorable performance than APA, RPA, and GPA for predicting OS in NSCLC patients with BMs.

11.
Cancer Res ; 82(17): 3130-3142, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35802647

RESUMEN

Tissue-resident memory CD8+ T (TRM) cells have been associated with robust protective antitumor immune responses and improved prognosis of patients with cancer. Therefore, therapeutic strategies that modulate either the production or activity of TRM cells could be effective for treating cancer. Using a high-throughput drug screen, we showed that the neurotransmitter dopamine drives differentiation of CD8+ T cells into CD103+ TRM cells. In murine syngeneic tumor xenograft models and clinical human colon cancer samples, DRD5 served as the major functional dopamine receptor on CD8+ T cells and positively correlated with TRM cell density. DRD5 deficiency led to a failure of CD8+ T cells to accumulate in tissues, resulting in impaired TRM cell formation, reduced effector function, and uncontrolled disease progression. Moreover, dopamine treatment promoted the antitumor activity of CD8+ T cells and suppressed colorectal cancer growth in immunocompentent mouse models, and ex vivo preconditioning with dopamine enhanced the in vivo efficacy of chimeric antigen receptor (CAR)-T cells. Finally, in a patient with colorectal cancer cohort, dopamine expression was positively associated with patient survival and CD8+ T-cell infiltration. These findings suggest that dopaminergic immunoregulation plays an important role in the differentiation of CD8+ cells into CD103+ TRM cells and thereby modulates TRM-elicited antitumor immunity in colorectal cancer. SIGNIFICANCE: Identification of an immunostimulatory function of dopamine signaling by promoting tissue-resident memory T-cell differentiation and sustaining T-cell effector functions reveals potential therapeutic strategies and prognostic biomarkers for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Memoria Inmunológica , Animales , Linfocitos T CD8-positivos , Neoplasias Colorrectales/metabolismo , Dopamina/metabolismo , Humanos , Activación de Linfocitos , Ratones , Receptores de Dopamina D5/metabolismo
12.
Nat Commun ; 13(1): 2672, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562334

RESUMEN

Intrinsic and acquired anti-HER2 resistance remains a major hurdle for treating HER2-positive breast cancer. Using genome-wide CRISPR/Cas9 screening in vitro and in vivo, we identify FGFR4 as an essential gene following anti-HER2 treatment. FGFR4 inhibition enhances susceptibility to anti-HER2 therapy in resistant breast cancer. Mechanistically, m6A-hypomethylation regulated FGFR4 phosphorylates GSK-3ß and activates ß-catenin/TCF4 signaling to drive anti-HER2 resistance. Notably, suppression of FGFR4 dramatically diminishes glutathione synthesis and Fe2+ efflux efficiency via the ß-catenin/TCF4-SLC7A11/FPN1 axis, resulting in excessive ROS production and labile iron pool accumulation. Ferroptosis, a unique iron-dependent form of oxidative cell death, is triggered after FGFR4 inhibition. Experiments involving patient-derived xenografts and organoids reveals a synergistic effect of anti-FGFR4 with anti-HER2 therapy in breast cancer with either intrinsic or acquired resistance. Together, these results pinpoint a mechanism of anti-HER2 resistance and provide a strategy for overcoming resistance via FGFR4 inhibition in recalcitrant HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Adenosina/análogos & derivados , Adenosina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Muerte Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Femenino , Glucógeno Sintasa Quinasa 3 beta , Humanos , Hierro , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , beta Catenina
13.
Oncogene ; 41(22): 3104-3117, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35468939

RESUMEN

Kelch superfamily involves a variety of proteins containing multiple kelch motif and is well characterized as substrate adaptors for CUL3 E3 ligases, which play critical roles in carcinogenesis. However, the role of kelch proteins in lung cancer remains largely unknown. In this study, the non-small cell lung cancer (NSCLC) patients with higher expression of a kelch protein, kelch domain containing 3 (KLHDC3), showed worse overall survival. KLHDC3 deficiency affected NSCLC cell lines proliferation in vitro and in vivo. Further study indicated that KLHDC3 mediated CUL2 E3 ligase and tumor suppressor p14ARF interaction, facilitating the N-terminal ubiquitylation and subsequent degradation of p14ARF. Interestingly, Gefitinib-resistant NSCLC cell lines displayed higher KLHDC3 protein levels. Gefitinib and Osimertinib medications were capable of upregulating KLHDC3 expression to promote p14ARF degradation in the NSCLC cell lines. KLHDC3 shortage significantly increased the sensitivity of lung cancer cells to epidermal growth factor receptor (EGFR)-targeted drugs, providing an alternative explanation for the development of Gefitinib and Osimertinib resistance in NSCLC therapy. Our works suggest that CRL2KLHDC3 could be a valuable target to regulate the abundance of p14ARF and postpone the occurrence of EGFR-targeted drugs resistance.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gefitinib/farmacología , Gefitinib/uso terapéutico , Humanos , Secuencia Kelch , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteína p14ARF Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
14.
Cell Rep ; 38(3): 110256, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34990583

RESUMEN

Inoculation against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing worldwide. However, the emergence of SARS-CoV-2 variants could cause immune evasion. We developed a bivalent nanoparticle vaccine that displays the receptor binding domains (RBDs) of the D614G and B.1.351 strains. With a prime-boost or a single-dose strategy, this vaccine elicits a robust neutralizing antibody and full protection against infection with the authentic D614G or B.1.351 strain in human angiotensin-converting enzyme 2 transgene mice. Interestingly, 8 months after inoculation with the D614G-specific vaccine, a new boost with this bivalent vaccine potently elicits cross-neutralizing antibodies for SARS-CoV-2 variants in rhesus macaques. We suggest that the D614G/B.1.351 bivalent vaccine could be used as an initial single dose or a sequential enforcement dose to prevent infection with SARS-CoV-2 and its variants.


Asunto(s)
COVID-19/prevención & control , Protección Cruzada , SARS-CoV-2/inmunología , Vacunas Combinadas/uso terapéutico , Animales , Células CHO , Vacunas contra la COVID-19/síntesis química , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Chlorocebus aethiops , Cricetulus , Protección Cruzada/inmunología , Femenino , Células HEK293 , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Nanopartículas , Vacunación/métodos , Vacunas Combinadas/síntesis química , Vacunas Combinadas/inmunología , Células Vero
15.
Eur J Cancer ; 163: 26-34, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032814

RESUMEN

AIM: Metastasis is the primary cause of treatment failure in nasopharyngeal carcinoma (NPC); however, the current tumour-node-metastasis staging system has limitations in predicting distant metastasis and guiding induction chemotherapy (IC) application. Here, we established a transcriptomics-based gene signature to assess the risk of distant metastasis and guide IC in locoregionally advanced NPC. METHODS: Transcriptome sequencing was performed on NPC biopsy samples from 12 pairs of patients with different metastasis risks. Bioinformatics and qPCR were used to identify differentially expressed genes (DEGs), while univariate and multivariate analyses were used to select prognostic indicators for the gene signature. A signature-based nomogram was established in a training cohort (n = 191) and validated in an external cohort (n = 263). RESULTS: Eleven DEGs were identified between metastatic and non-metastatic NPC. Four of these (AK4, CPAMD8, DDAH1 and CRTR1) were used to create a gene signature that effectively categorised patients into low- and high-risk metastasis groups (training: 91.1 versus 70.4%, p < 0.0001, C-index = 0.752; validation: 88.4 versus 73.9%, p = 0.00057, C-index = 0.741). IC with concurrent chemoradiotherapy (CCRT) improved distant metastasis-free survival in low-risk patients (94.4 versus 85.0%, p = 0.043), whereas patients in the high-risk group did not benefit from IC (72.6 versus 74.9%, p = 0.946). CONCLUSIONS: Our transcriptomics-based gene signature was able to reliably predict metastasis in locoregionally advanced NPC and could be used to identify candidates that could benefit from IC + CCRT.


Asunto(s)
Neoplasias Nasofaríngeas , Transcriptoma , Quimioradioterapia , Humanos , Quimioterapia de Inducción , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética
16.
Signal Transduct Target Ther ; 6(1): 420, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907154

RESUMEN

COVID-19 is identified as a zoonotic disease caused by SARS-CoV-2, which also can cross-transmit to many animals but not mice. Genetic modifications of SARS-CoV-2 or mice enable the mice susceptible to viral infection. Although neither is the natural situation, they are currently utilized to establish mouse infection models. Here we report a direct contact transmission of SARS-CoV-2 variant B.1.351 in wild-type mice. The SARS-CoV-2 (B.1.351) replicated efficiently and induced significant pathological changes in lungs and tracheas, accompanied by elevated proinflammatory cytokines in the lungs and sera. Mechanistically, the receptor-binding domain (RBD) of SARS-CoV-2 (B.1.351) spike protein turned to a high binding affinity to mouse angiotensin-converting enzyme 2 (mACE2), allowing the mice highly susceptible to SARS-CoV-2 (B.1.351) infection. Our work suggests that SARS-CoV-2 (B.1.351) expands the host range and therefore increases its transmission route without adapted mutation. As the wild house mice live with human populations quite closely, this possible transmission route could be potentially risky. In addition, because SARS-CoV-2 (B.1.351) is one of the major epidemic strains and the mACE2 in laboratory-used mice is naturally expressed and regulated, the SARS-CoV-2 (B.1.351)/mice could be a much convenient animal model system to study COVID-19 pathogenesis and evaluate antiviral inhibitors and vaccines.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/transmisión , Interacciones Huésped-Patógeno/genética , Receptores Virales/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , COVID-19/inmunología , COVID-19/virología , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Expresión Génica , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Unión Proteica , Dominios Proteicos , Receptores Virales/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Replicación Viral
17.
Nat Commun ; 12(1): 6624, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785638

RESUMEN

Epstein-Barr virus (EBV) is associated with a range of epithelial and B cell malignancies as well as autoimmune disorders, for which there are still no specific treatments or effective vaccines. Here, we isolate EBV gH/gL-specific antibodies from an EBV-infected individual. One antibody, 1D8, efficiently neutralizes EBV infection of two major target cell types, B cells and epithelial cells. In humanized mice, 1D8 provides protection against a high-dose EBV challenge by substantially reducing viral loads and associated tumor burden. Crystal structure analysis reveals that 1D8 binds to a key vulnerable interface between the D-I/D-II domains of the viral gH/gL protein, especially the D-II of the gH, thereby interfering with the gH/gL-mediated membrane fusion and binding to target cells. Overall, we identify a potent and protective neutralizing antibody capable of reducing the EBV load. The novel vulnerable site represents an attractive target that is potentially important for antibody and vaccine intervention against EBV infection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/inmunología , Animales , Anticuerpos Neutralizantes/química , Linfocitos B/inmunología , Cristalografía por Rayos X , Células Epiteliales/inmunología , Epítopos , Infecciones por Virus de Epstein-Barr/virología , Glicoproteínas/química , Humanos , Fusión de Membrana , Ratones , Proteínas del Tejido Nervioso/química , Proteínas Virales/metabolismo , Replicación Viral
18.
Mol Med Rep ; 24(5)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34505633

RESUMEN

Inhibin ßA (INHBA) serves a prognostic and tumor­promoting role in numerous types of cancer. The present study aimed to determine the clinical significance of INHBA in non­small cell lung cancer (NSCLC) and the mechanisms underlying its potential tumor­promoting effect. INHBA expression was detected in clinical NSCLC samples using immunohistochemistry. In vivo loss­ and gain­of­function studies were performed to determine the effects of INHBA on NSCLC invasion. In addition, protein and mRNA expression levels of INHBA, yes­associated protein (YAP), large tumor suppressor 1/2 kinase (LATS1/2), connective tissue growth factor, cysteine rich angiogenic inducer 61 and Merlin were assessed using western blotting and reverse transcription­quantitative PCR, respectively, to investigate the mechanism by which INHBA may affect the invasion of NSCLC. The present study revealed that INHBA was significantly upregulated in 238 clinical NSCLC samples compared with its expression levels in paired adjacent non­cancerous tissues, and in metastatic nodules compared with in primary tumors. Notably, high INHBA expression was statistically associated with clinicopathological features, including poor differentiation and advanced tumor stage. INHBA positivity was statistically related to decreased 5­year overall survival, for which INHBA was an independent prognostic factor. Furthermore, INHBA promoted NSCLC invasion in vitro. In NSCLC, INHBA expression was associated with the nuclear levels of YAP and INHBA overexpression enhanced the invasive abilities of NSCLC cells via inhibiting the Hippo pathway. Mechanistically, INHBA inhibited l LATS1/2 phosphorylation and induced YAP nuclear translocation by downregulating the protein expression levels of Merlin. In conclusion, INHBA may negatively regulate the Hippo pathway to act as a tumor promotor, and could represent a marker of prognosis in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Subunidades beta de Inhibinas/metabolismo , Adulto , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , China , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Vía de Señalización Hippo/genética , Humanos , Subunidades beta de Inhibinas/análisis , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Pronóstico , Proteínas Serina-Treonina Quinasas , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética
19.
Genome Med ; 13(1): 146, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493320

RESUMEN

BACKGROUND: Epstein-Barr virus (EBV)-associated gastric carcinomas (EBVaGCs) present unique molecular signatures, but the tumorigenesis of EBVaGCs and the role EBV plays during this process remain poorly understood. METHODS: We applied whole-exome sequencing, EBV genome sequencing, and whole-genome bisulfite sequencing to multiple samples (n = 123) derived from the same patients (n = 25), which covered saliva samples and different histological stages from morphologically normal epithelial tissues to dysplasia and EBVaGCs. We compared the genomic landscape between EBVaGCs and their precursor lesions and traced the clonal evolution for each patient. We also analyzed genome sequences of EBV from samples of different histological types. Finally, the key molecular events promoting the tumor evolution were demonstrated by MTT, IC50, and colony formation assay in vitro experiments and in vivo xenograft experiments. RESULTS: Our analysis revealed increasing mutational burden and EBV load from normal tissues and low-grade dysplasia (LD) to high-grade dysplasia (HD) and EBVaGCs, and oncogenic amplifications occurred late in EBVaGCs. Interestingly, within each patient, EBVaGCs and HDs were monoclonal and harbored single-strain-originated EBV, but saliva or normal tissues/LDs had different EBV strains from that in EBVaGCs. Compared with precursor lesions, tumor cells showed incremental methylation in promotor regions, whereas EBV presented consistent hypermethylation. Dominant alterations targeting the PI3K-Akt and Wnt pathways were found in EBV-infected cells. The combinational inhibition of these two pathways in EBV-positive tumor cells confirmed their synergistic function. CONCLUSIONS: We portrayed the (epi) genomic evolution process of EBVaGCs, revealed the extensive genomic diversity of EBV between tumors and normal tissue sites, and demonstrated the synergistic activation of the PI3K and Wnt pathways in EBVaGCs, offering a new potential treatment strategy for this disease.


Asunto(s)
Carcinoma/genética , Infecciones por Virus de Epstein-Barr/genética , Genómica , Herpesvirus Humano 4/genética , Neoplasias Gástricas/genética , Animales , Línea Celular Tumoral , Metilación de ADN , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Oncogenes , Fosfatidilinositol 3-Quinasas/genética , Filogenia , Neoplasias Gástricas/patología , Secuenciación Completa del Genoma
20.
Int J Clin Oncol ; 26(10): 1847-1855, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34398362

RESUMEN

RNA-binding proteins (RBPs) play crucial roles in the post-transcriptional regulation of mRNA during numerous physiological and pathological processes, including tumor genesis and development. However, the role of RNA-binding motif protein 43 (RBM43) in esophageal squamous cell carcinoma (ESCC) has not been reported so far. The current study was the first to evaluate RBM43 protein expression by immunohistochemistry (IHC) in an independent cohort of 207 patients with ESCC, to explore its potential prognostic value and clinical relevance in ESCC. The results indicated that RBM43 protein levels were significantly elevated in ESCC tissues and increased RBM43 expression was associated with age and N categories. In addition, ESCC patients with high expression of RBM43 had shorter overall survival (OS) and disease-free survival (DFS) than those with low RBM43 expression. Furthermore, when survival analyses were conducted at different clinical stages, overexpression of RBM43 was significantly correlated with shortened survival in patients with ESCC at early stages (TNM stage I-II and N0 stage). Cox regression analysis further proved that high RBM43 expression was an independent predictor of poor prognosis in ESCC patients. In conclusion, increased expression of RBM43 is correlated with malignant attributes to ESCC and predicts unfavorable prognosis, suggesting an effective prognostic biomarker and potential therapeutic target for ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias de Cabeza y Cuello , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Pronóstico , Motivos de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...