Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Sensors (Basel) ; 24(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38894201

RESUMEN

Information-Centric Networking (ICN) is the emerging next-generation internet paradigm. The Low Earth Orbit (LEO) satellite mega-constellation based on ICN can achieve seamless global coverage and provide excellent support for Internet of Things (IoT) services. Additionally, in-network caching, typically characteristic of ICN, plays a paramount role in network performance. Therefore, the in-network caching policy is one of the hotspot problems. Especially, compared to caching traditional internet content, in-networking caching IoT content is more challenging, since the IoT content lifetime is small and transient. In this paper, firstly, the framework of the LEO satellite mega-constellation Information-Centric Networking for IoT (LEO-SMC-ICN-IoT) is proposed. Then, introducing the concept of "viscosity", the proposed Caching Algorithm based on the Random Forest (CARF) policy of satellite nodes combines both content popularity prediction and satellite nodes location prediction, for achieving good cache matching between the satellite nodes and content. And using the matching rule, the Random Forest (RF) algorithm is adopted to predict the matching relationship among satellite nodes and content for guiding the deployment of caches. Especially, the content is cached in advance at the future satellite to maintain communication with the current ground segment at the time of satellite switchover. Additionally, the policy considers both the IoT content lifetime and the freshness. Finally, a simulation platform with LEO satellite mega-constellation based on ICN is developed in Network Simulator 3 (NS-3). The simulation results show that the proposed caching policy compared with the Leave Copy Everywhere (LCE), the opportunistic (OPP), the Leave Copy down (LCD), and the probabilistic algorithm which caches each content with probability 0.5 (prob 0.5) yield a significant performance improvement, such as the average number of hops, i.e., delay, cache hit rate, and throughput.

2.
Front Chem ; 12: 1406051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860236

RESUMEN

This study introduces newly discovered chrysin derivatives that show potential as candidate molecules for treating inflammatory bowel disease (IBD). Compound 4b, among the synthesized compounds, displayed significant inhibitory effects on monocyte adhesion to colon epithelium induced by TNF-α, with an IC50 value of 4.71 µM. Further mechanistic studies demonstrated that 4b inhibits the production of reactive oxygen species (ROS) and downregulates the expression of ICAM-1 and MCP-1, key molecules involved in monocyte-epithelial adhesion, as well as the transcriptional activity of NF-κB. In vivo experiments have shown that compound 4b exhibits a dose-dependent inhibition of 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats, thereby validating its effectiveness as a colitis inhibitor in animal models. These results indicate that 4b shows considerable promise as a therapeutic agent for managing IBD.

3.
Dent Mater J ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38853006

RESUMEN

To study the biocompatibility of nanohydroxyapatite (nmHA)-SiO2 fiber material and its efficacy in guided bone regeneration. ① The cytotoxicity of the nmHA-SiO2 fiber material to MC3T3-E1 cells was determined by CCK-8 assay. The adhesion of cells on the surface of the material was observed. ② Bone defects were prepared in the skull of three groups of New Zealand white rabbits. The following treatments were administered: implantation of nmHA-SiO2, implantation of Bio-Oss, and no treatment. The defects were then covered with nmHA-SiO2 membrane or Hai'ao oral repair membrane. Animal samples were analyzed by gross observation, micro-computed tomography, hematoxylin-eosin staining and Masson staining. The data were statistically analyzed by multivariate analysis of variance to evaluate the repair of bone defects. ① The nmHA-SiO2 fiber material has suitable biocompatibility. ② The nmHA-SiO2 fiber material performed more effectively as a barrier membrane than other bone substitute materials in GBR model rabbits.

4.
Nat Commun ; 15(1): 5130, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879536

RESUMEN

Intron retention (IR) is the most common alternative splicing event in Arabidopsis. An increasing number of studies have demonstrated the major role of IR in gene expression regulation. The impacts of IR on plant growth and development and response to environments remain underexplored. Here, we found that IR functions directly in gene expression regulation on a genome-wide scale through the detainment of intron-retained transcripts (IRTs) in the nucleus. Nuclear-retained IRTs can be kept away from translation through this mechanism. COP1-dependent light modulation of the IRTs of light signaling genes, such as PIF4, RVE1, and ABA3, contribute to seedling morphological development in response to changing light conditions. Furthermore, light-induced IR changes are under the control of the spliceosome, and in part through COP1-dependent ubiquitination and degradation of DCS1, a plant-specific spliceosomal component. Our data suggest that light regulates the activity of the spliceosome and the consequent IRT nucleus detainment to modulate photomorphogenesis through COP1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Núcleo Celular , Regulación de la Expresión Génica de las Plantas , Intrones , Luz , Empalmosomas , Ubiquitina-Proteína Ligasas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Intrones/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Empalmosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Núcleo Celular/metabolismo , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/efectos de la radiación , Plantones/metabolismo , Empalme Alternativo , Ubiquitinación
5.
Regen Biomater ; 11: rbae051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854679

RESUMEN

Hydroxyapatite (HA) whisker (HAw) represents a distinct form of HA characterized by its high aspect ratio, offering significant potential for enhancing the mechanical properties of bone tissue engineering scaffolds. However, the limited osteoinductivity of HAw hampers its widespread application. In this investigation, we observed HAw-punctured osteoblast membranes and infiltrated the cell body, resulting in mechanical damage to cells that adversely impacted osteoblast proliferation and differentiation. To address this challenge, we developed nano-zinc oxide particle-modified HAw (nano-ZnO/HAw). Acting as a reinforcing and toughening agent, nano-ZnO/HAw augmented the compressive strength and ductility of the matrix materials. At the same time, the surface modification with nano-ZnO particles improved osteoblast differentiation by reducing the mechanical damage from HAw to cells and releasing zinc ion, the two aspects collectively promoted the osteoinductivity of HAw. Encouragingly, the osteoinductive potential of 5% nano-ZnO/HAw and 10% nano-ZnO/HAw was validated in relevant rat models, demonstrating the efficacy of this approach in promoting new bone formation in vivo. Our findings underscore the role of nano-ZnO particle surface modification in enhancing the osteoinductivity of HAw from a physical standpoint, offering valuable insights into the development of bone substitutes with favorable osteoinductive properties while simultaneously bolstering matrix material strength and toughness.

6.
Fitoterapia ; 176: 106012, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744381

RESUMEN

One of the primary applications for agarwood lies in the extracts, instead, there are obvious differences in the demands for agarwood components with different application fields. To obtain the rough separation and clarify each part's activity, four extracts of essential oil, hydrolat, extractum, and ethanol precipitation from traditional agarwood (TraA) and "Qinan" agarwood (QinA) were obtained by steam-solvent multistage extraction and ethanol precipitation. We investigated the chemistry and biological activity of multistage extracts using gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), and in vitro activity testing. The results demonstrated that two kinds of agarwood essential oils contained mainly sesquiterpenoids, yet the sesquiterpene species were remarkably diverse in two kinds of agarwood essential oils. Then, the TraA and QinA hydrolat, all predominantly aromatic and sesquiterpene, but with differences from the essential oil ingredients. Additionally, the extractum chiefly contained chromones and the ethanol precipitation method worked well to separate the impurities in the TraA extract, however, it was ineffective for the QinA extract. Ultimately, essential oils and extractums all have antioxidant properties, with extractums outperforming essential oils. Moreover, both extractums and essential oils exhibited excellent broad-spectrum antimicrobial activity and anti-inflammatory activity. The findings pointed to the feasibility of separating the primary components from TraA and QinA using a multi-stage extraction technique, providing a scientific basis for the efficient utilization of all components of agarwood, as well as the functional product development and differentiated utilization of extract products in incense, fragrance, perfume, and daily chemicals.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles , Extractos Vegetales , Sesquiterpenos , Thymelaeaceae , Thymelaeaceae/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Madera/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/química , Cromonas/aislamiento & purificación , Cromonas/farmacología , Cromonas/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-38806410

RESUMEN

Protein phosphorylation, a common post-translational modification (PTM), is fundamental in a plethora of biological processes, most importantly in modulating cell signaling pathways. Matrix-assisted laser desorption/ionization (MALDI) coupled to tandem mass spectrometry (MS/MS) is an attractive method for phosphopeptide characterization due to its high speed, low limit of detection, and surface sampling capabilities. However, MALDI analysis of phosphopeptides is constrained by relatively low abundances in biological samples and poor relative ionization efficiencies in positive ion mode. Additionally, MALDI tends to produce singly charged ions, generally limiting the accessible MS/MS techniques that can be used for peptide sequencing. For example, collision induced dissociation (CID) is readily amendable to the analysis of singly charged ions, but results in facile loss of phosphoric acid, precluding the localization of the PTM. Electron-based dissociation methods (e.g., electron capture dissociation, ECD) are well suited for PTM localization, but require multiply charged peptide cations to avoid neutralization during ECD. Conversely, phosphopeptides are readily ionized using MALDI in negative ion mode. If the precursor ions are first formed in negative ion mode, a gas-phase charge inversion ion/ion reaction could then be used to transform the phosphopeptide anions produced via MALDI into multiply charged cations that are well-suited for ECD. Herein we demonstrate a multistep workflow combining a charge inversion ion/ion reaction that first transforms MALDI-generated phosphopeptide monoanions into multiply charged cations, and then subjects these multiply charged phosphopeptide cations to ECD for sequence determination and phosphate bond localization.

9.
Disabil Rehabil ; : 1-15, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38638087

RESUMEN

PURPOSE: This review systematically explores and summarise the effects of motor imagery training (MIT) compared to conventional therapy on gait performance in individuals after stroke. MATERIALS AND METHODS: Randomised controlled trials (RCTs) were systematically searched in five electronic databases (PubMed, EMBASE, PsycINFO, OVID Nursing and CINAHL) from inception to 30 December 2022. Studies investigating MITs, targeted at individuals after stroke were eligible. Data were extracted related to study and intervention characteristics. RESULTS: Sixteen studies were included. Compared with 'routine methods of treatment or training', the meta-analyses showed that MIT was more effective in improving cadence immediately post intervention (SMD: 1.22, 95% CI: 0.59, 1.85, p = 0.0001, I2 = 25%) and at 1- or 2-months post intervention (SMD: 0.78, 95% CI: 0.35, 1.20, p = 0.0004, I2 = 46%). The results also showed that MIT improves the step length of the affected side and the unaffected side at 1- or 2-months post intervention. Separate meta-analyses were also conducted on different tests of walking endurance (assessed by the 6-Minute Walk Test) and functional mobility (assessed by the Timed-Up-and-Go test). CONCLUSIONS: MIT effectively improved gait performance. The findings in individuals after stroke remain inconclusive due to significant heterogeneity in included studies.


Restoring gait performance and daily functional abilities is an important goal of post-stroke rehabilitation.Motor imagery training (MIT) may be a promising method to improve gait restoration and is expected to provide another option for the effective rehabilitation of stroke patients.This review highlights the limited research on MIT and thus the limited evidence to guide clinical rehabilitation.In the stroke rehabilitation, clinical specialists may consider incorporating MIT into the treatment programme to improve patients' gait performance and ensure effective early lower limb rehabilitation.

10.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557493

RESUMEN

Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Hepatocitos/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Modelos Animales de Enfermedad
12.
J Exp Bot ; 75(11): 3452-3466, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38497815

RESUMEN

The 2-(2-phenethyl)chromones (PECs) are the signature constituents responsible for the fragrance and pharmacological properties of agarwood. O-Methyltransferases (OMTs) are necessary for the biosynthesis of methylated PECs, but there is little known about OMTs in Aquilaria sinensis. In this study, we identified 29 OMT genes from the A. sinensis genome. Expression analysis showed they were differentially expressed in different tissues and responded to drill wounding. Comprehensive analysis of the gene expression and methylated PEC content revealed that AsOMT2, AsOMT8, AsOMT11, AsOMT16, and AsOMT28 could potentially be involved in methylated PECs biosynthesis. In vitro enzyme assays and functional analysis in Nicotiana benthamiana demonstrated that AsOMT11 and AsOMT16 could methylate 6-hydroxy-2-(2-phenylethyl)chromone to form 6-methoxy-2-(2-phenylethyl)chromone. A transient overexpression experiment in the variety 'Qi-Nan' revealed that AsOMT11 and AsOMT16 could significantly promote the accumulation of three major methylated PECs. Our results provide candidate genes for the mass production of methylated PECs using synthetic biology.


Asunto(s)
Metiltransferasas , Proteínas de Plantas , Thymelaeaceae , Thymelaeaceae/genética , Thymelaeaceae/metabolismo , Thymelaeaceae/enzimología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cromonas/metabolismo , Madera/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Metilación , Regulación de la Expresión Génica de las Plantas , Flavonoides
13.
Fitoterapia ; 175: 105901, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467281

RESUMEN

To compare the bioactive compounds in agarwood induced by different methods in Aquilaria sinensis(Lour.) Gilg trees, a two dimensional thin layer chromatograph(2D-TLC) combined with effect directive analysis(EDA) was developed. Three antioxidants were found by 2D-TLC-DPPH and further identified as 2-(2-phenylethyl) chromones(PECs) with LC-MS/MS. The 3 antioxidants decreased along agarwood formation and their compositions in drilling induced agarwood differed with those in microbe culture induced agarwood. Further study showed NaCl treatment promoted antioxidants accumulation in agarwood induced by drilling or hot drilling. Hot drilling combined with salty stimulation was most efficient in some chemicals accumulation, which were identified as PECs with antioxidant, tyrosinase or ß-glucosidase inhibiting activities by 2D-TLC-EDA-LC-MS/MS. This study provided a 2D-TLC-EDA-LC-MS/MS method for bioactive compounds screen and qualification of agarwood. Based on this method, non-conventional methods were found to accelerate the accumulation of some bioactive PECs in A. sinensis trees.


Asunto(s)
Antioxidantes , Espectrometría de Masas en Tándem , Thymelaeaceae , Thymelaeaceae/química , Antioxidantes/farmacología , Cromatografía en Capa Delgada , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Madera/química , Cloruro de Sodio/farmacología , Cloruro de Sodio/química , Cromatografía Liquida , Monofenol Monooxigenasa/antagonistas & inhibidores , Estructura Molecular , Flavonoides
14.
Nature ; 626(8000): 859-863, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326609

RESUMEN

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Asunto(s)
Aciltransferasas , Amidohidrolasas , Aminas , Ácidos y Sales Biliares , Biocatálisis , Microbioma Gastrointestinal , Humanos , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Aminas/química , Aminas/metabolismo , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Estudios de Cohortes , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Ligandos , Receptor X de Pregnano/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción/metabolismo , Lactante , Técnicas de Cultivo de Célula
15.
Mar Drugs ; 22(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38393028

RESUMEN

Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.


Asunto(s)
Neuroblastoma , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Peróxido de Hidrógeno/toxicidad , Mitofagia , Neuroblastoma/tratamiento farmacológico , Apoptosis , Estrés Oxidativo , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Xantófilas
16.
Int J Biol Macromol ; 261(Pt 2): 129908, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320642

RESUMEN

An alcohol-induced liver injury model was induced in C57BL/6 mice to assess the protective efficacy of Enteromorpha prolifera polysaccharides (EP) against liver damage. Histological alterations in the liver were examined following hematoxylin-eosin (H&E) staining. Biochemical assay kits and ELISA kits were employed to analyze serum and liver biochemical parameters, as well as the activity of antioxidant enzymes and alcohol metabolism-related enzymes. The presence of oxidative stress-related proteins in the liver was detected using western blotting. Liquid chromatography and mass spectrometry were used to profile serum metabolites in mice. The findings demonstrated that EP-H (100 mg/Kg) reduced serum ALT and AST activity by 2.31-fold and 2.32-fold, respectively, when compared to the alcohol-induced liver injury group. H&E staining revealed a significant attenuation of microvesicular steatosis and ballooning pathology in the EP-H group compared to the model group. EP administration was found to enhance alcohol metabolism by regulating metabolite-related enzymes (ADH and ALDH) and decreasing CYP2E1 expression. EP also modulated the Nrf2/HO-1 signaling pathway to bolster hepatic antioxidant capacity. Furthermore, EP restored the levels of lipid metabolites (Glycine, Butanoyl-CoA, and Acetyl-CoA) to normalcy. In summary, EP confers protection to the liver through the regulation of antioxidant activity and lipid metabolites in the murine liver.


Asunto(s)
Antioxidantes , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Algas Comestibles , Ulva , Ratones , Animales , Antioxidantes/farmacología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Ratones Endogámicos C57BL , Hígado , Estrés Oxidativo , Etanol/farmacología , Polisacáridos/farmacología , Polisacáridos/química , Lípidos/farmacología
17.
Heart Lung Circ ; 33(5): 605-638, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38242833

RESUMEN

AIM: With the advancement of anti-cancer medicine, cardiovascular toxicities due to cancer therapies are common in oncology patients, resulting in increased mortality and economic burden. Cardiovascular toxicities caused by cancer therapies include different severities of cardiomyopathy, arrhythmia, myocardial ischaemia, hypertension, and thrombosis, which may lead to left ventricular dysfunction and heart failure. This scoping review aimed to summarise the mechanisms of cardiovascular toxicities following various anti-cancer treatments and potential predictive biomarkers for early detection. METHODS: PubMed, Cochrane, Embase, Web of Science, Scopus, and CINAHL databases were searched for original studies written in English related to the mechanisms of cardiovascular toxicity induced by anti-cancer therapies, including chemotherapy, targeted therapy, immunotherapy, radiation therapy, and relevant biomarkers. The search and title/abstract screening were conducted independently by two reviewers, and the final analysed full texts achieved the consensus of the two reviewers. RESULTS: A total of 240 studies were identified based on their titles and abstracts. In total, 107 full-text articles were included in the analysis. Cardiomyocyte and endothelial cell apoptosis caused by oxidative stress injury, activation of cell apoptosis, blocking of normal cardiovascular protection signalling pathways, overactivation of immune cells, and myocardial remodelling were the main mechanisms. Promising biomarkers for anti-cancer therapies related to cardiovascular toxicity included placental growth factor, microRNAs, galectin-3, and myeloperoxidase for the early detection of cardiovascular toxicity. CONCLUSION: Understanding the mechanisms of cardiovascular toxicity following various anti-cancer treatments could provide implications for future personalised treatment methods to protect cardiovascular function. Furthermore, specific early sensitive and stable biomarkers of cardiovascular system damage need to be identified to predict reversible damage to the cardiovascular system and improve the effects of anti-cancer agents.


Asunto(s)
Antineoplásicos , Biomarcadores , Enfermedades Cardiovasculares , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/diagnóstico , Antineoplásicos/efectos adversos , Cardiotoxicidad/etiología , Cardiotoxicidad/diagnóstico
18.
Physiol Int ; 111(1): 35-46, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38261006

RESUMEN

Objective: Gastric cancer is the most frequent gastrointestinal malignancy with a poor prognosis. Rac GTPase activation protein 1 (RACGAP1) is a novel tumor promotor, whose detailed effect on gastric cancer remains to be further elucidated. Hence, this study identifies the action of RACGAP1 on gastric cancer and investigates the potential mechanism. Methods: RACGAP1 expression in gastric cancer was analyzed based on the data of The Cancer Genome Atlas (TCGA) database. Cell proliferation was measured by CCK-8 and colony formation assay. Cell migration and invasion were evaluated by transwell assay. Cell apoptosis was assessed by flow cytometry. Cell autophagy was evaluated via determining LC3. Results: RACGAP1 presented at high level in gastric cancer cells. Overexpressed RACGAP1 potentiated gastric cancer cell proliferation, migration, and invasion. Besides, silenced RACGAP1 induced cell apoptosis and autophagy. Furthermore, RACGAP1 suppressed the expression of SIRT1 and Mfn2. Conclusion: RACGAP1 was overexpressed in gastric cancer. RACGAP1 potentiated aggressive behaviors of gastric cancer, and suppressed cell apoptosis and autophagy via modulating SIRT1/Mfn2. RACGAP1 may be a valuable target in the treatment of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Sirtuina 1/genética , Proliferación Celular , Autofagia , Línea Celular Tumoral
19.
Proc Natl Acad Sci U S A ; 121(6): e2317408121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285953

RESUMEN

Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteína-Arginina N-Metiltransferasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Plantones/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Luz
20.
Nature ; 626(7998): 419-426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052229

RESUMEN

Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.


Asunto(s)
Amidas , Ácidos y Sales Biliares , Ésteres , Ácidos Grasos , Metabolómica , Animales , Humanos , Bifidobacterium/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Clostridium/metabolismo , Estudios de Cohortes , Enfermedad de Crohn/metabolismo , Enterococcus/metabolismo , Ésteres/química , Ésteres/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Metabolómica/métodos , Fenotipo , Receptor X de Pregnano/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Amidas/química , Amidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA