RESUMEN
Cubic and hexagonal structured SrTa4O11(STO):Er3+/Yb3+ phosphors were synthesized by a solid state reaction (SSR) and molten salt synthesis (MSS). The upconversion luminescence (UCL) intensity of these samples was investigated. Hexagonal STO:Er3+/Yb3+ with much or a little ß-Ta2O5 can be synthesized by SSR in air or vacuum, respectively, and the UCL intensity of the sample synthesized by SSR in a vacuum is higher. Cubic STO:Er3+/Yb3+ can be synthesized by MSS with KCl flux, and hexagonal STO:Er3+/Yb3+ can be synthesized by MSS with B2O3 flux, which has the strongest UCL intensity among all the samples compared with samples prepared by SSR. The sample by MSS with B2O3 flux was acid pickled (AP) with HCl solution, and the green UCL intensity increased by 2.18 times, which reached 32.95% for ß-NaYF4:Er3+/Yb3+. The UCL intensity of the hexagonal STO:Er3+/Yb3+ is much higher than that of the cubic structure, which is due to the layered structure and the non-central symmetry of the Er3+/Yb3+ doped sites in hexagonal STO:Er3+/Yb3+. The temperature sensitivity of samples is evaluated by luminescence intensity ratio (LIR) technology. The maximum relative sensitivity is 0.0099 K-1 at 303 K. All the results show that hexagonal STO:Er3+/Yb3+ has excellent pure green UCL intensity and high temperature sensitivity, which can be used in UCL display and temperature sensing.
RESUMEN
Low phonon tantalate-based phosphors with a layer structure are considered to have excellent upconversion luminescence (UCL) intensity, which could be reduced due to the existence of impure phase defects and inappropriate doped rare earth ions. To improve their UCL performance, we have prepared single-phase CaTa4O11:Er3+/Yb3+ samples by a molten salt synthesis (MSS) using KCl as the reaction medium and compared its UCL properties with counterparts made by a conventional solid-state reaction (SSR) in this study. We have demonstrated that the MSS samples have a much higher UCL intensity under 980 nm laser excitation than the SSR ones due to accurate replacement of Ca2+ sites by Er3+/Yb3+ in high-purity single-phase MSS samples. We have further enhanced the green UCL intensity of the MSS samples by 1.57 times via acid picking (AP). Under 980 nm laser excitation at a high powder density of 61.3 W/cm2, the green UCL intensity of the MSS-AP samples can reach 3.72 times that of the SSR-AP samples. For potential luminescence thermometry applications, the maximum absolute sensitivity (SA) of the MSS-AP samples reaches 0.01316 K-1 at 501 K based on the luminescence intensity ratio. This study shows that CaTa4O11:Er3+/Yb3+ phosphors prepared by the MSS method are single-phase samples with excellent pure green UCL as a suitable temperature sensing material.