Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Am J Hum Genet ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362218

RESUMEN

Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet most of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n = 158), Europeans (EUR, n = 408), and East Asians (EAS, n = 217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs linked to 1,276 genes and 198,769 SNPs were found to be specific to non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified five risk genes (SFXN2, VPS37B, DENR, FTCDNL1, and NT5DC2) and three potential regulatory variants in known risk genes (CNNM2, MTRFR, and MPHOSPH9) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of risk genes in SCZ.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 327: 125351, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39481164

RESUMEN

Lipid metabolic diseases have become an important challenge to global public health. Along with lifestyle changes, the incidence of obesity, diabetes and other metabolic syndromes is on the rise, and the number of patients with fatty liver disease is also increasing. Therefore, it is particularly important to develop effective lipid imaging strategies to monitor and manage fatty liver disease. Herein, based on the essential role of alkaline phosphatase (ALP) in both AS and OB, in vivo imaging of ALP was achieved in two lipid metabolic diseases models with a photoacoustic (PA) probe phosphorylated hemicyanine (P-Hcy). After being triggered by ALP, P-Hcy responded in different modalities including absorbance, fluorescence and, most significantly, PA-reporting. Notably, the PA signal showed the reliable linear correlation to the ALP level within the range of 0-800 U/L. The probe P-Hcy exhibited the advantages including high sensitivity, high selectivity, and steadiness in required biological conditions. The intracellular imaging results ensured that P-Hcy could visualize the ALP level in the foam cells induced from mouse mononuclear macrophages. In the healthy and lipid metabolic diseases models, P-Hcy was able to distinguish well between a lipid metabolic disease model and a healthy mouse model by photoacoustic imaging. By combining the ALP detection with P-Hcy in PA/fluorescence modality and traditional techniques such as blood biochemical testing and immunohistochemically staining, more potential strategy to accurately diagnose lipid metabolic diseases in the pre-clinical trials might be developed in future.

3.
Sci Rep ; 14(1): 25274, 2024 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-39455681

RESUMEN

Presenilin-associated protein (PSAP) is a mitochondrial proapoptotic protein as established in cell biology studies. It remains unknown whether it involves in neurodegenerative diseases. Here, we explored PASP expression in adult and aged human brains and its alteration relative to Alzheimer-disease (AD)-type neuropathology. In pathology-free brains, light PASP immunoreactivity (IR) occurred among largely principal neurons in the cerebrum and subcortical structures. In the brains with AD pathology, enhanced PSAP IR occurred in neuronal and neuritic profiles with a tangle-like appearance, with PSAP and pTau protein levels elevated in neocortical lysates relative to control. Neuronal/neuritic profiles with enhanced PSAP IR partially colocalized with pTau, but invariably with Amylo-Glo labelled tangles. The neuronal somata with enhanced PASP IR also showed diminished IR for casein kinase 1 delta (Ck1δ), a marker of granulovacuolar degeneration; and diminished IR for sortilin, which is normally expressed in membrane and intracellular protein sorting/trafficking organelles. In old 3xTg-AD mice with ß-amyloid and pTau pathologies developed in the brain, PSAP IR in the cerebral sections exhibited no difference relative to wildtype mice. These findings indicate that PSAP upregulation is involved in the course of tangle formation especially in the human brain during aging and in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Neuronas , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Apoptosis , Encéfalo/metabolismo , Encéfalo/patología , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Neuronas/metabolismo , Neuronas/patología , Proteínas tau/metabolismo , Presenilinas
4.
Mol Neurodegener ; 19(1): 75, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39425207

RESUMEN

BACKGROUND: The activation of endoplasmic reticulum (ER) stress is an early pathological hallmark of Alzheimer's disease (AD) brain, but how ER stress contributes to the onset and development of AD remains poorly characterized. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a non-canonical neurotrophic factor and an ER stress inducible protein. Previous studies reported that MANF is increased in the brains of both pre-symptomatic and symptomatic AD patients, but the consequence of the early rise in MANF protein is unknown. METHODS: We examined the expression of MANF in the brain of AD mouse models at different pathological stages. Through behavioral, electrophysiological, and neuropathological analyses, we assessed the level of synaptic dysfunctions in the MANF transgenic mouse model which overexpresses MANF in the brain and in wild type (WT) mice with MANF overexpression in the hippocampus. Using proteomic and transcriptomic screening, we identified and validated the molecular mechanism underlying the effects of MANF on synaptic function. RESULTS: We found that increased expression of MANF correlates with synapse loss in the hippocampus of AD mice. The ectopic expression of MANF in mice via transgenic or viral approaches causes synapse loss and defects in learning and memory. We also identified that MANF interacts with ELAV like RNA-binding protein 2 (ELAVL2) and affects its binding to RNA transcripts that are involved in synaptic functions. Increasing or decreasing MANF expression in the hippocampus of AD mice exacerbates or ameliorates the behavioral deficits and synaptic pathology, respectively. CONCLUSIONS: Our study established MANF as a mechanistic link between ER stress and synapse loss in AD and hinted at MANF as a therapeutic target in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Factores de Crecimiento Nervioso , Sinapsis , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Factores de Crecimiento Nervioso/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Ratones , Humanos , Estrés del Retículo Endoplásmico/fisiología , Hipocampo/metabolismo , Hipocampo/patología
5.
J Clin Invest ; 134(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39403921

RESUMEN

Parkinson's disease (PD) is characterized by age-dependent neurodegeneration and the accumulation of toxic phosphorylated α-synuclein (pS129-α-syn). The mechanisms underlying these crucial pathological changes remain unclear. Mutations in parkin RBR E3 ubiquitin protein ligase (PARK2), the gene encoding parkin that is phosphorylated by PTEN-induced putative kinase 1 (PINK1) to participate in mitophagy, cause early onset PD. However, current parkin-KO mouse and pig models do not exhibit neurodegeneration. In the current study, we utilized CRISPR/Cas9 technology to establish parkin-deficient monkey models at different ages. We found that parkin deficiency leads to substantia nigra neurodegeneration in adult monkey brains and that parkin phosphorylation decreases with aging, primarily due to increased insolubility of parkin. Phosphorylated parkin is important for neuroprotection and the reduction of pS129-α-syn. Consistently, overexpression of WT parkin, but not a mutant form that cannot be phosphorylated by PINK1, reduced the accumulation of pS129-α-syn. These findings identify parkin phosphorylation as a key factor in PD pathogenesis and suggest it as a promising target for therapeutic interventions.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , alfa-Sinucleína , Animales , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Fosforilación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Humanos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Macaca fascicularis , Ratones , Masculino
6.
Cell Death Discov ; 10(1): 359, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128910

RESUMEN

Subarachnoid hemorrhage (SAH) is one of the most severe type of cerebral strokes, which can cause multiple cellular changes in the brain leading to neuronal injury and neurological deficits. Specifically, SAH can impair adult neurogenesis in the hippocampal dentate gyrus, thus may affecting poststroke neurological and cognitive recovery. Here, we identified a non-canonical role of milk fat globule epidermal growth factor 8 (MFGE8) in rat brain after experimental SAH, involving a stimulation on adult hippocampal neurogenesis(AHN). Experimental SAH was induced in Sprague-Dawley rats via endovascular perforation, with the in vivo effect of MFGE8 evaluated via the application of recombinant human MFGE8 (rhMFGE8) along with pharmacological interventions, as determined by hemorrhagic grading, neurobehavioral test, and histological and biochemical analyses of neurogenesis related markers. Results: Levels of the endogenous hippocampal MFGE8 protein, integrin-ß3 and protein kinase B (p-Akt) were elevated in the SAH relative to control groups, while that of hippocalcin (HPCA) and cyclin D1 showed the opposite change. Intraventricular rhMGFE8 infusion reversed the decrease in doublecortin (DCX) immature neurons in the DG after SAH, along with improved the short/long term neurobehavioral scores. rhMGFE8 treatment elevated the levels of phosphatidylinositol 3-kinase (PI3K), p-Akt, mammalian target of rapamycin (mTOR), CyclinD1, HPCA and DCX in hippocampal lysates, but not that of integrin ß3 and Akt, at 24 hr after SAH. Treatment of integrin ß3 siRNA, the PI3K selective inhibitor ly294002 or Akt selective inhibitor MK2206 abolished the effects of rhMGFE8 after SAH. In conclusion, MFGE8 is upregulated in the hippocampus in adult rats with reduced granule cell genesis. rhMFGE8 administration can rescue this impaired adult neurogenesis and improve neurobehavioral recovery. Mechanistically, the effect of MFGE8 on hippocampal adult neurogenesis is mediated by the activation of integrin ß3/Akt pathway. These findings suggest that exogenous MFGE8 may be of potential therapeutic value in SAH management. Graphical abstract and proposed pathway of rhMFGE8 administration attenuate hippocampal injury by improving neurogenesis in SAH models. SAH caused hippocampal injury and neurogenesis interruption. Administered exogenous MFGE8, recombinant human MFGE8(rhMFGE8), could ameliorate hippocampal injury and improve neurological functions after SAH. Mechanistically, MFGE8 bind to the receptor integrin ß3, which activated the PI3K/Akt pathway to increase the mTOR expression, and further promote the expression of cyclin D1, HPCA and DCX. rhMFGE8 could attenuated hippocampal injury by improving neurogenesis after SAH, however, know down integrin ß3 or pharmacological inhibited PI3K/Akt by ly294002 or MK2206 reversed the neuro-protective effect of rhMFGE8.

7.
Alzheimers Dement ; 20(9): 6287-6304, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39015037

RESUMEN

INTRODUCTION: Aging is one of the risk factors for the early onset of Alzheimer's disease (AD). We previously discovered that the age-dependent increase in Ubiquitin Conjugating Enzyme E2 N (UBE2N) plays a role in the accumulation of misfolded proteins through K63 ubiquitination, which has been linked to AD pathogenesis. However, the impact of UBE2N on amyloid pathology and clearance has remained unknown. RESULTS: We observed the elevated UBE2N during the amyloid beta (Aß) generation in the brains of 5×FAD, APP/PS1 mice, and patients with AD, in comparison to healthy individuals. UBE2N overexpression exacerbated amyloid deposition in 5×FAD mice and senescent monkeys, whereas knocking down UBE2N via CRISPR/Cas9 reduced Aß generation and cognitive deficiency. Moreover, pharmacological inhibition of UBE2N ameliorated Aß pathology and subsequent transcript defects in 5×FAD mice. DISCUSSION: We have discovered that age-dependent expression of UBE2N is a critical regulator of AD pathology. Our findings suggest that UBE2N could serve as a potential pharmacological target for the advancement of AD therapeutics. HIGHLIGHTS: Ubiquitin Conjugating Enzyme E2 N (UBE2N) level was elevated during amyloid beta (Aß) deposition in AD mouse and patients' brains. UBE2N exacerbated Aß generation in the AD mouse and senescent monkey. Drug inhibition of UBE2N ameliorated Aß pathology and cognitive deficiency.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Enzimas Ubiquitina-Conjugadoras , Animales , Femenino , Humanos , Masculino , Ratones , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Transgénicos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
8.
ACS Pharmacol Transl Sci ; 7(7): 2054-2062, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022359

RESUMEN

Positron emission tomography (PET) imaging of amyloid-ß (Aß) has emerged as a crucial strategy for early diagnosis and monitoring of therapeutic advancements targeting Aß. In our previous first-in-human study, we identified that [18F]Florbetazine ([18F]92), featuring a diaryl-azine scaffold, exhibits higher cortical uptake in Alzheimer's disease (AD) patients compared to healthy controls (HC). Building upon these promising findings, this study aimed to characterize the diagnostic potential of [18F]92 and its dimethylamino-modified tracer [18F]91 and further compare them with the benchmark [11C]PiB in the same cohort of AD patients and age-matched HC subjects. The cortical accumulation of these tracers was evident, with no significant radioactivity retention observed in the cortex of HC subjects, consistent with [11C]PiB images (correlation coefficient of 0.9125 and 0.7883 between [18F]Florbetazine/[18F]91 and [11C]PiB, respectively). Additionally, quantified data revealed higher standardized uptake value ratios (SUVR) (with the cerebellum as the reference region) of [18F]Florbetazine/[18F]91 in AD patients compared to the HC group ([18F]Florbetazine: 1.49 vs 1.16; [18F]91: 1.33 vs 1.20). Notably, [18F]Florbetazine exhibited less nonspecific bindings in myelin-rich regions, compared to the dimethylamino-substituted [18F]91, akin to [11C]PiB. Overall, this study suggests that [18F]Florbetazine displays superior characteristics to [18F]91 in identifying Aß pathology in AD. Furthermore, the close agreement between the uptakes in nontarget regions for [18F]Florbetazine and [11C]PiB in this head-to-head comparison study underscores its suitability for both clinical and research applications.

9.
J Med Chem ; 67(15): 12695-12710, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39080985

RESUMEN

α-synuclein (α-syn) pathologies are central to the development of synucleinopathies including Parkinson's disease (PD). Positron emission tomography (PET) imaging of α-syn pathologies is one strategy to facilitate the diagnosis, understanding, and treatment of synucleinopathies, but has been restricted by the lack of specific α-syn PET probes. In this work, we identified 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole (ITA) as a new α-syn-binding scaffold. Through autoradiography studies, we discovered an iodinated lead compound [125I]ITA-3, with moderate binding affinity (IC50 = 55 nM) to α-syn pathologies in human PD brain sections. Modified from [125I]ITA-3, we developed a potential PET tracer, [18F]FITA-2 (radiochemical yield >25%, molar activity >110 GBq/µmol), which demonstrated clear signals in α-syn-rich regions in human PD brain tissues (IC50 = 245 nM), good brain uptake (SUVpeak = 2.80 ± 0.45), and fast clearance rate in rats. Overall, [18F]FITA-2 appears to be a promising candidate for α-syn PET imaging and merits further development.


Asunto(s)
Tomografía de Emisión de Positrones , Tiadiazoles , alfa-Sinucleína , Tomografía de Emisión de Positrones/métodos , alfa-Sinucleína/metabolismo , Humanos , Animales , Tiadiazoles/química , Tiadiazoles/síntesis química , Tiadiazoles/farmacología , Tiadiazoles/farmacocinética , Ratas , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Radiofármacos/química , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Radiofármacos/farmacología , Radioisótopos de Flúor/química , Imidazoles/química , Imidazoles/farmacocinética , Imidazoles/síntesis química , Masculino , Ratas Sprague-Dawley , Descubrimiento de Drogas , Relación Estructura-Actividad
11.
medRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826275

RESUMEN

Aging significantly elevates the risk for Alzheimer's disease (AD), contributing to the accumulation of AD pathologies, such as amyloid-ß (Aß), inflammation, and oxidative stress. The human prefrontal cortex (PFC) is highly vulnerable to the impacts of both aging and AD. Unveiling and understanding the molecular alterations in PFC associated with normal aging (NA) and AD is essential for elucidating the mechanisms of AD progression and developing novel therapeutics for this devastating disease. In this study, for the first time, we employed a cutting-edge spatial transcriptome platform, STOmics® SpaTial Enhanced Resolution Omics-sequencing (Stereo-seq), to generate the first comprehensive, subcellular resolution spatial transcriptome atlas of the human PFC from six AD cases at various neuropathological stages and six age, sex, and ethnicity matched controls. Our analyses revealed distinct transcriptional alterations across six neocortex layers, highlighted the AD-associated disruptions in laminar architecture, and identified changes in layer-to-layer interactions as AD progresses. Further, throughout the progression from NA to various stages of AD, we discovered specific genes that were significantly upregulated in neurons experiencing high stress and in nearby non-neuronal cells, compared to cells distant from the source of stress. Notably, the cell-cell interactions between the neurons under the high stress and adjacent glial cells that promote Aß clearance and neuroprotection were diminished in AD in response to stressors compared to NA. Through cell-type specific gene co-expression analysis, we identified three modules in excitatory and inhibitory neurons associated with neuronal protection, protein dephosphorylation, and negative regulation of Aß plaque formation. These modules negatively correlated with AD progression, indicating a reduced capacity for toxic substance clearance in AD subject samples. Moreover, we have discovered a novel transcription factor, ZNF460, that regulates all three modules, establishing it as a potential new therapeutic target for AD. Overall, utilizing the latest spatial transcriptome platform, our study developed the first transcriptome-wide atlas with subcellular resolution for assessing the molecular alterations in the human PFC due to AD. This atlas sheds light on the potential mechanisms underlying the progression from NA to AD.

12.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758800

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Asunto(s)
Cuerpo Estriado , Proteína Huntingtina , Enfermedad de Huntington , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Animales , Humanos , Ratones , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Neuronas/metabolismo , Neuronas/patología , Primates , Proteolisis , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Macaca fascicularis
13.
Cell Mol Neurobiol ; 44(1): 27, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38443733

RESUMEN

Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.


Asunto(s)
Epilepsia , Humanos , Epilepsia/terapia , Convulsiones
14.
medRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405973

RESUMEN

Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet, the majority of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n=158), Europeans (EUR, n=408), and East Asians (EAS, n=217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs (representing ∼17% of all eQTLs pairs) linked to 1,276 genes (about 10% of all eGenes) and 198,769 SNPs (approximately 16% of all eSNPs) were identified only in the non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare (MAF < 0.05) in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified seven new risk genes ( SFXN2 , RP11-282018.3 , CYP17A1 , VPS37B , DENR , FTCDNL1 , and NT5DC2 ), and three potential novel regulatory variants in known risk genes ( CNNM2 , C12orf65 , and MPHOSPH9 ) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of novel risk genes in SCZ.

15.
Neuroscience ; 542: 21-32, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38340785

RESUMEN

Neuroinflammation is an early event of brain injury after subarachnoid hemorrhage (SAH). Whether the macrophage mediators in resolving inflammation 1 (MaR1) is involved in SAH pathogenesis is unknown. In this study, 205 male Sprague-Dawley rats were subjected to SAH via endovascular perforation in the experimental and control groups. MaR1 was dosed intranasally at 1 h after SAH, with LGR6 siRNA and KG-501, GSK-J4 administered to determine the signaling pathway. Neurobehavioral, histological and biochemical data were obtained from the animal groups with designated treatments. The results showed: (i) The leucine-rich repeat containing G protein-coupled receptor 6 (LGR6) was decreased after SAH and reached to the lowest level at 24 h after SAH. Jumonji d3 (JMJD3) protein levels tended to increase and peaked at 24 h after SAH. LGR6 and JMJD3 expression were co-localized with microglia. (ii) MaR1 administration mitigated short-term neurological deficits, brain edema and long-term neurobehavioral performance after SAH, and attenuated microglial activation and neutrophil infiltration. (iii) Knockdown of LGR6, inhibition of CREB phosphorylation or JMJD3 activity abolished the anti-neuroinflammatory effect of MaR1 on the expression of CREB, CBP, JMJD3, IRF4, IRF5, IL-1ß, IL-6 and IL-10, thus prevented microglial activation and neutrophil infiltration. Together, the results show that MaR1 can activate LGR6 and affect CREB/JMJD3/IRF4 signaling to attenuate neuroinflammation after SAH, pointing to a potential pharmacological utility in this disorder.


Asunto(s)
Ácidos Docosahexaenoicos , Enfermedades Neuroinflamatorias , Hemorragia Subaracnoidea , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Transducción de Señal
16.
PLoS Biol ; 22(1): e3002470, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206965

RESUMEN

The bridging integrator 1 (BIN1) gene is an important risk locus for late-onset Alzheimer's disease (AD). BIN1 protein has been reported to mediate tau pathology, but the underlying molecular mechanisms remain elusive. Here, we show that neuronal BIN1 is cleaved by the cysteine protease legumain at residues N277 and N288. The legumain-generated BIN1 (1-277) fragment is detected in brain tissues from AD patients and tau P301S transgenic mice. This fragment interacts with tau and accelerates its aggregation. Furthermore, the BIN1 (1-277) fragment promotes the propagation of tau aggregates by enhancing clathrin-mediated endocytosis (CME). Overexpression of the BIN1 (1-277) fragment in tau P301S mice facilitates the propagation of tau pathology, inducing cognitive deficits, while overexpression of mutant BIN1 that blocks its cleavage by legumain halts tau propagation. Furthermore, blocking the cleavage of endogenous BIN1 using the CRISPR/Cas9 gene-editing tool ameliorates tau pathology and behavioral deficits. Our results demonstrate that the legumain-mediated cleavage of BIN1 plays a key role in the progression of tau pathology. Inhibition of legumain-mediated BIN1 cleavage may be a promising therapeutic strategy for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Clatrina/metabolismo , Endocitosis , Ratones Transgénicos , Proteínas tau/genética , Proteínas tau/metabolismo
17.
Mol Pharm ; 20(11): 5865-5876, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37852240

RESUMEN

This study focused on designing and evaluating Tau-PET tracers for noninvasive positron emission computed tomography (PET) imaging of neurofibrillary tangles (NFTs), a hallmark pathology of Alzheimer's disease (AD). The tracers were synthesized with a 2-styrylquinoxaline scaffold and varying lengths of FPEG chains. The compound [18F]15, which had two ethoxy units, showed high affinity for recombinant K18-Tau aggregates (Ki = 41.48 nM) and the highest selectivity versus Aß1-42 aggregates (8.83-fold). In vitro autoradiography and fluorescent staining profiles further validated the binding of [18F]15 or 15 toward NFTs in brain sections from AD patients and Tau-transgenic mice. In normal ICR mice, [18F]15 exhibited an ideal initial brain uptake (11.21% ID/g at 2 min) and moderate washout ratio (2.29), and micro-PET studies in rats confirmed its ability to penetrate the blood-brain barrier with the peak SUV value of 1.94 in the cortex. These results suggest that [18F]15 has the potential to be developed into a useful Tau-PET tracer for early AD diagnosis and evaluation of anti-Tau therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Ratones , Humanos , Ratas , Animales , Proteínas tau/metabolismo , Ratones Endogámicos ICR , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Encéfalo/metabolismo , Ratones Transgénicos
18.
ACS Med Chem Lett ; 14(8): 1108-1112, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37583810

RESUMEN

Near-infrared fluorescence (NIRF) imaging as an exquisite sensitive, high spatial-resolution, and real-time tool plays an important role in visualizing pathologies in the brain. In this study, we designed and synthesized a series of NIR probes of hydroxyethyl cycloheptatriene-BODIPY derivatives that have demonstrated strong binding specificity to native neurofibrillary tangles (NFTs) in Alzheimer's disease (AD) brain sections. The improved hydrophilicity of TNIR7-9 and TNIR7-11 resulted in faster clearance rates from healthy brains (4.2 and 10.9, respectively) compared to previously reported compounds. Furthermore, TNIR7-13, which features a fluorinated modification, exhibited a high binding affinity to Tau aggregates (Kd = 11.8 nM) and held promise for future PET studies.

19.
Immunity ; 56(8): 1794-1808.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37442133

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is strongly linked to Alzheimer's disease (AD) risk, but its functions are not fully understood. Here, we found that TREM2 specifically attenuated the activation of classical complement cascade via high-affinity binding to its initiator C1q. In the human AD brains, the formation of TREM2-C1q complexes was detected, and the increased density of the complexes was associated with lower deposition of C3 but higher amounts of synaptic proteins. In mice expressing mutant human tau, Trem2 haploinsufficiency increased complement-mediated microglial engulfment of synapses and accelerated synaptic loss. Administration of a 41-amino-acid TREM2 peptide, which we identified to be responsible for TREM2 binding to C1q, rescued synaptic impairments in AD mouse models. We thus demonstrate a critical role for microglial TREM2 in restricting complement-mediated synaptic elimination during neurodegeneration, providing mechanistic insights into the protective roles of TREM2 against AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Complemento C1q , Ratones , Animales , Humanos , Complemento C1q/genética , Complemento C1q/metabolismo , Encéfalo/metabolismo , Sinapsis/metabolismo , Activación de Complemento , Microglía/metabolismo , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
20.
Nat Neurosci ; 26(7): 1170-1184, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37264159

RESUMEN

Extensive studies indicate that ß-amyloid (Aß) aggregation is pivotal for Alzheimer's disease (AD) progression; however, cumulative evidence suggests that Aß itself is not sufficient to trigger AD-associated degeneration, and whether other additional pathological factors drive AD pathogenesis remains unclear. Here, we characterize pathogenic aggregates composed of ß2-microglobulin (ß2M) and Aß that trigger neurodegeneration in AD. ß2M, a component of major histocompatibility complex class I (MHC class I), is upregulated in the brains of individuals with AD and constitutes the amyloid plaque core. Elevation of ß2M aggravates amyloid pathology independent of MHC class I, and coaggregation with ß2M is essential for Aß neurotoxicity. B2m genetic ablation abrogates amyloid spreading and cognitive deficits in AD mice. Antisense oligonucleotide- or monoclonal antibody-mediated ß2M depletion mitigates AD-associated neuropathology, and inhibition of ß2M-Aß coaggregation with a ß2M-based blocking peptide ameliorates amyloid pathology and cognitive deficits in AD mice. Our findings identify ß2M as an essential factor for Aß neurotoxicity and a potential target for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cognición , Precursor de Proteína beta-Amiloide/genética , Placa Amiloide/genética , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...