RESUMEN
Environmental high temperature poses a significant threat to human health, however, limited information is available for understanding the relationship between the hot weather and infertility. This study aims to assess the adverse effect of the hot weather to early embryonic cells. Our results indicated that environmental high temperature exposure could cause the decline of early embryo quality and implantation ability. In detail, it led to early embryonic development retardation, embryo degeneration rate increased, the rate of blastocyst and hatching decreased, and reduced the number of implants. And the finding also the impairment of environmental high temperature on early embryonic cells may be due to oxidative damage of DNA caused by ROS, while BER repair ability is decreased, failing to repair oxidative damage of DNA in time, resulting in a large number of early embryonic apoptosis. The work underscored that pregnant women should stay away from high-temperature environments.
RESUMEN
Mammalian DNA extracted from the invertebrates, especially blowfly-derived DNA, has been suggested as a useful tool to complement traditional field methods for terrestrial mammal monitoring. However, the accuracy of the estimated location of the target mammal detected from blowfly-derived DNA is largely dependent on the knowledge of blowflies' dispersal range. Presently, published data on adult blowfly dispersal capabilities remain scarce and mostly limited to temperate and subtropical regions, with no published report on the adult blowfly dispersal range in the Tropics. We seek to determine the blowfly flight range and dispersal activity in a tropical plantation in Malaysia by mark-release-recapture of approximately 3000 wild blowflies by use of rotten fish-baited traps for nine consecutive days. Out of the 3000 marked Chrysomya spp., only 1.5% (43) were recaptured during the 9-day sampling period. The majority of the blowflies (79%) were recaptured 1 km from the release point, while 20.9% were caught about 2-3 km from the release point. One individual blowfly travelled as far as 3 km and before being recaptured, which was the maximum dispersal distance recorded in this study. This result suggests that the estimated locations of the mammals detected from blowfly-derived iDNA is likely to be within 1-2 km radius from the origin of the blowfly sampling location. However, a more accurate estimated distance between the target mammal and the blowfly sampling location requires further investigation due to various factors, such as blowfly species, wind speed and direction that may potentially affect the blowfly dispersal activities. This study contributes further understanding on the development of a blowfly-derived DNA method as a mammalian monitoring tool in the tropical forests.