Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39199145

RESUMEN

Wheatgrass is recognized for its nutritional and medicinal properties, partly attributed to its flavonoid content. The objective of this study was to assess the flavonoid content and antioxidant properties of wheatgrass obtained from a wide range of 145 wheat cultivars, which included Chinese landraces (CL), modern Chinese cultivars (MCC), and introduced modern cultivars (IMC). The flavonoids were extracted using a solution of 80% methanol, and their content was evaluated using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The results revealed the assessed cultivars showed significant variation in their total flavonoid content (TFC), with MCCs generally having higher amounts compared to CLs. PCA analysis demonstrated clear variations in flavonoid profiles between different cultivar groups, emphasizing the evolutionary inconsistencies in wheat breeding. The antioxidant assays, ABTS, DPPH, and FRAP, exhibited robust abilities for eliminating radicals, which were found to be directly associated with the amounts of flavonoids. In addition, this study investigated the correlation between the content of flavonoids and the ability to resist powdery mildew in a collection of mutated wheat plants. Mutants exhibiting heightened flavonoid accumulation demonstrated a decreased severity of powdery mildew, suggesting that flavonoids play a protective role against fungal infections. The results highlight the potential of wheatgrass as a valuable source of flavonoids that have antioxidant and protective effects. This potential is influenced by the genetic diversity and breeding history of wheatgrass. Gaining insight into these connections can guide future wheat breeding endeavors aimed at improving nutritional value and in strengthening disease resistance. The current finding provides critical information for developing wheatgrass with high flavonoid content and antioxidant activity.

2.
PLoS One ; 17(6): e0270130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35749453

RESUMEN

Imidocarb (IMD) is commonly used for treatment of eperythrozoon, babesia, piroplasma and trypanosoma in animals, but there are few studies on its pharmacokinetics in cattle. The purpose of this study was to obtain pharmacokinetic parameters and assess the bioequivalence of subcutaneous injections of two IMD formulations in cattle. Forty-eight healthy cattle, 24 males and 24 females, were randomLy divided into two groups (test group and reference group) with 12 males and 12 females per group. The generic IMD was injected subcutaneously with a single dose of 3.0 mg/kg in the test group. Reference group animals were given one injection of the marketed IMD at the same dosage. The limit of detection (LOD) and limit of quantification (LOQ) for IMD in cattle plasma were 0.05 ng/mL and 0.1 ng/mL, respectively. The recoveries ranged from 88.50% to 92.42%, and the equation of this calibration curve was Y = 13672.1X+187.43. The pharmacokinetics parameters of the test group showed that the maximum concentration of 2257.5±273.62 ng/mL was obtained at 2.14±0.67 h, AUC0-t 14553.95±1946.85 ng·h/mL, AUC∞ 15077.88±1952.19 ng·h/mL, T1/2 31.77±25.75 h, CL/F 0.14±0.02 mL/h/g, and Vz/F 6.53±5.34 mL/g. There was no significant difference in AUC0-t, AUC∞ and Cmax between the test group and the reference group (P>0.05). The 90% confidence interval of AUC0-t, AUC0-∞ and Cmax in the test group was included in 80%-125% AUC0-t, AUC0-∞ and 70%-143% Cmax in the reference group, respectively. Based on these results, the two preparations were found to be bioequivalent.


Asunto(s)
Imidocarbo , Animales , Bovinos , Femenino , Masculino , Área Bajo la Curva , Estudios Cruzados , Inyecciones Subcutáneas , Comprimidos , Equivalencia Terapéutica
3.
Anal Methods ; 13(27): 3068-3076, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34142691

RESUMEN

Mycoplasma gallisepticum (M. gallisepticum) is the primary agent of chronic respiratory disease causing important economic losses in the poultry industry. Compared to antibodies, aptamers used to diagnose M. gallisepticum have many advantages, such as being chemically, animal-free produced and easily modifiable without affecting their affinity. Herein, a single-stranded DNA (ssDNA) aptamer Apt-236 which can specifically bind to PvpA protein of M. gallisepticum with a Kd of 1.30 ± 0.18 nM was selected successfully. An indirect blocking ELAA (ib-ELAA) for M. gallisepticum antibodies detection was also developed using Apt-236, in which M. gallisepticum antibodies would block the binding-position of aptamers. Therefor positive sera would prevent color development whereas negative sera will allow a strong color reaction. The ib-ELAA was consistent with other three widely used assays in terms of the growth and decline of the antibody response to M. gallisepticum, and showed substantial agreement with the results obtained using a commercial ELISA kit in clinical chicken sera samples. Therefore, the ib-ELAA developed in this study was a new format for aptamer application and would be an alternative method for the surveillance of M. gallisepticum.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma gallisepticum , Enfermedades de las Aves de Corral , Animales , ADN de Cadena Simple , Ensayo de Inmunoadsorción Enzimática , Infecciones por Mycoplasma/diagnóstico , Mycoplasma gallisepticum/genética , Enfermedades de las Aves de Corral/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...