Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1287: 342086, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182341

RESUMEN

The present study introduces a novel fluorescent sensor with an overtone peak reference designed for the detection of mercury (Ⅱ) ions (Hg2+) and hydrogen sulfide (H2S). The study proposes two novel response mechanisms that hinges on the synergistic effect of cation exchange dissociation (CED) and photo-induced electron transfer (PET). This sensor exhibits a remarkable detection limit of 2.9 nM for Hg2+. Additionally, the sensor reacts with H2S to generate nickel sulfide (NiS) semiconductor nanoparticles, which amplify the fluorescence signal and enable a detection limit of 3.1 nM for H2S. The detection limit for H2S is further improved to 29.1 pM through the surface functionalization of the nanomaterial with pyridine groups (increasing reactivity) and chelation of gold nanoparticles (AuNPs), which enhances the sensor's specificity. This improvement is primarily due to the surface plasmon resonance (SPR) of AuNPs and their affinity for H2S. The single-emission strategy can yield skewed results due to environmental changes, whereas the overtone peak reference strategy enhances result accuracy and reliability by detecting environmental interference through reference emission peaks. In another observation, the low-toxicity dihydropyrene-bipyridine nanorods (TPP-BPY) has been successfully utilized for both endogenous and exogenous H2S detection in vivo using a mouse model. The successful development of TPP-BPY is expected to provide an effective tool for studying the role of H2S in biomedical systems.


Asunto(s)
Sulfuro de Hidrógeno , Mercurio , Nanopartículas del Metal , Oro , Reproducibilidad de los Resultados , Iones , Monitoreo del Ambiente , Colorantes
2.
Chemistry ; 29(68): e202302395, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37706350

RESUMEN

The inherent challenges in using metal-organic frameworks (MOFs) for photocatalytic CO2 reduction are the combination of wide-range light harvesting, efficient charge separation and transfer as well as highly exposed catalytic active sites for CO2 activation and reduction. We present here a promising solution to satisfy these requirements together by modulating the crystal facet and surface atomic structure of a porphyrin-based bismuth-MOF (Bi-PMOF). The series of structural and photo-electronic characterizations together with photocatalytic CO2 reduction experiment collectively establish that the enriched Bi active sites on the (010) surface prefer to promote efficient charge separation and transfer as well as the activation and reduction of CO2 . Specifically, the Bi-PMOFs-120-F with enriched surface Bi active sites exhibits optimal photocatalytic CO2 reduction performance to CO (28.61 µmol h-1 g-1 ) and CH4 (8.81 µmol h-1 g-1 ). This work provides new insights to synthesize highly efficient main group p-block metal Bi-MOF photocatalysts for CO2 reduction through a facet-regulation strategy and sheds light on the surface structure-activity relationships of the MOFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...