Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Food Chem ; 460(Pt 2): 140698, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39098192

RESUMEN

Resveratrol is a promising functional ingredient applied in food products. However, low bioavailability and poor water solubility, which can be improved by glycosylation, hinder its application. A uridine diphosphate-dependent glycosyltransferase (UGT) from Bacillus subtilis 168 (named UGTBS) presents potential application for resveratrol glycosylation; nonetheless, imprecise regioselectivity renders the synthesis of resveratrol-3-O-ß-D-glucoside (polydatin) difficult. Therefore, molecular evolution was applied to UGTBS. A triple mutant Y14I/I62G/M315W was developed for 3-OH glycosylation of resveratrol and polydatin accounted for 91% of the total product. Kinetic determination and molecular docking indicated that the enhancement of hydrogen bond interaction and altered conformation of the binding pocket increases the enzyme's affinity for the 3-OH group, stabilizing the enzyme-substrate intermediate and promoting polydatin formation. Furthermore, a fed-batch cascade reaction by periodic addition of resveratrol was conducted and nearly 20 mM polydatin was obtained. The mutant Y14I/I62G/M315W can be used for polydatin manufacture.

2.
J Biotechnol ; 382: 37-43, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244699

RESUMEN

Keratinase, a vital enzyme in hair degradation, requires enhanced stability for industrial applications in the harsh reaction environment used for keratin hydrolysis. Previous studies have focused on improving keratinase thermostability. In this study, directed evolution was applied to enhance the organic solvent stability of the keratinase BLk from Bacillus licheniformis. Three mutants were identified, exhibiting significant enhanced stability in various solvents, although no similar improvements were observed in terms of thermostability. The identified mutations were located on the enzyme surface. The half-lives of the D41A, A24E, and A24Q mutants increased by 47-, 63-, and 61-fold, respectively, in the presence of 50% (v/v) acetonitrile compared to that of the wild type (WT). Similarly, in the presence of 50% (v/v) acetone, the half-lives of these mutants increased by 22-, 27-, and 27-fold compared to that of the WT enzyme. Notably, the proteolytic activity of all the selected mutants was similar to that of the WT enzyme. Furthermore, molecular dynamics simulation was used to assess the possible reasons for enhanced solvent stability. These results suggest that heightened intramolecular interactions, such as hydrogen bonding and hydrophobic interactions, contribute to improved solvent tolerance. The mutants obtained in this study hold significant potential for industrial applications.


Asunto(s)
Péptido Hidrolasas , Solventes/química , Péptido Hidrolasas/metabolismo , Mutación , Hidrólisis , Estabilidad de Enzimas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...