Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987605

RESUMEN

Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance1. In addition to genetic mutations2, recent research has identified a role for non-genetic plasticity in transient drug tolerance3 and the acquisition of stable resistance4,5. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework. Here we demonstrate that resistance develops through trajectories of cell-state transitions accompanied by a progressive increase in cell fitness, which we denote as the 'resistance continuum'. This cellular adaptation involves a stepwise assembly of gene expression programmes and epigenetically reinforced cell states underpinned by phenotypic plasticity, adaptation to stress and metabolic reprogramming. Our results support the notion that epithelial-to-mesenchymal transition or stemness programmes-often considered a proxy for phenotypic plasticity-enable adaptation, rather than a full resistance mechanism. Through systematic genetic perturbations, we identify the acquisition of metabolic dependencies, exposing vulnerabilities that can potentially be exploited therapeutically. The concept of the resistance continuum highlights the dynamic nature of cellular adaptation and calls for complementary therapies directed at the mechanisms underlying adaptive cell-state transitions.

2.
Cell ; 187(12): 2907-2918, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848676

RESUMEN

Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations. Here, we note that across diverse cancer types, the observed cell states are proximate within the developmental hierarchy of the cell of origin. We thus posit a model by which cancer cell states are directly constrained by the organism's "developmental map." According to this model, a population of cancer cells traverses the developmental map, thereby generating a heterogeneous set of states whose interactions underpin emergent tumor behavior.


Asunto(s)
Modelos Biológicos , Neoplasias , Animales , Humanos , Carcinogénesis/patología , Carcinogénesis/genética , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética , Células Madre Neoplásicas/patología
3.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853846

RESUMEN

Microsporidia are single-celled intracellular parasites that cause opportunistic diseases in humans. Encephalitozoon intestinalis is a prevalent human-infecting species that invades the small intestine. Dissemination to other organ systems is also observed, and is potentially facilitated by macrophages. The macrophage response to infection and the developmental trajectory of the parasite are not well studied. Here we use single cell RNA sequencing to investigate transcriptional changes in both the host and parasite during infection. While a small population of infected macrophages mount a response, most remain transcriptionally unchanged, suggesting that the majority of parasites may avoid host detection. The parasite transcriptome reveals large transcriptional changes throughout the life cycle, providing a blueprint for parasite development. The stealthy microsporidian lifestyle likely allows these parasites to harness macrophages for replication and dissemination. Together, our data provide insights into the host response in primary human macrophages and the E. intestinalis developmental program.

4.
Elife ; 122024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687677

RESUMEN

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno , Estrés Oxidativo , Percepción de Quorum , Staphylococcus aureus , Transactivadores , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología , Staphylococcus aureus/metabolismo , Percepción de Quorum/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Transactivadores/metabolismo , Transactivadores/genética , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Ratones , Infecciones Estafilocócicas/microbiología , Viabilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Eliminación de Gen
5.
Cancer Cell ; 42(3): 413-428.e7, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38402609

RESUMEN

KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.


Asunto(s)
Acetonitrilos , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Piperazinas , Pirimidinas , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas p21(ras) , Genes ras , Mutación
6.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418917

RESUMEN

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Asunto(s)
Empalme Alternativo , Evolución Molecular , Hominidae , Proteínas de Dominio T Box , Cola (estructura animal) , Animales , Humanos , Ratones , Empalme Alternativo/genética , Elementos Alu/genética , Modelos Animales de Enfermedad , Genoma/genética , Hominidae/anatomía & histología , Hominidae/genética , Intrones/genética , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Fenotipo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/embriología , Exones/genética
7.
Nature ; 626(7999): 661-669, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267581

RESUMEN

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. In bacteria, the relationship between the regulatory architecture of a gene and its expression is well understood for individual model gene circuits2,3. However, a broader perspective of these dynamics at the genome scale is lacking, in part because bacterial transcriptomics has hitherto captured only a static snapshot of expression averaged across millions of cells4. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on the transcriptional response of each gene to its own replication, which we term the transcription-replication interaction profile (TRIP). Analysing single-bacterium RNA-sequencing data, we found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal the local regulatory context of a gene. Whereas the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, and this is shaped by factors such as intra-operon position and repression state. By revealing the underlying mechanistic drivers of gene expression heterogeneity, this work provides a quantitative, biophysical framework for modelling replication-dependent expression dynamics.


Asunto(s)
Bacterias , Replicación del ADN , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Transcripción Genética , Bacterias/genética , Replicación del ADN/genética , Dosificación de Gen/genética , Redes Reguladoras de Genes , Genoma Bacteriano/genética , Operón/genética , Análisis de Secuencia de ARN , Transcripción Genética/genética , Cromosomas Bacterianos/genética
8.
Elife ; 122024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38284404

RESUMEN

Pattern formation originates during embryogenesis by a series of symmetry-breaking steps throughout an expanding cell lineage. In Drosophila, classic work has shown that segmentation in the embryo is established by morphogens within a syncytium, and the subsequent action of the gap, pair-rule, and segment polarity genes. This classic model however does not translate directly to species that lack a syncytium - such as Caenorhabditis elegans - where cell fate is specified by cell-autonomous cell lineage programs and their inter-signaling. Previous single-cell RNA-Seq studies in C. elegans have analyzed cells from a mixed suspension of cells from many embryos to study late differentiation stages, or individual early stage embryos to study early gene expression in the embryo. To study the intermediate stages of early and late gastrulation (28- to 102-cells stages) missed by these approaches, here we determine the transcriptomes of the 1- to 102-cell stage to identify 119 embryonic cell states during cell fate specification, including 'equivalence-group' cell identities. We find that gene expression programs are modular according to the sub-cell lineages, each establishing a set of stripes by combinations of transcription factor gene expression across the anterior-posterior axis. In particular, expression of the homeodomain genes establishes a comprehensive lineage-specific positioning system throughout the embryo beginning at the 28-cell stage. Moreover, we find that genes that segment the entire embryo in Drosophila have orthologs in C. elegans that exhibit sub-lineage-specific expression. These results suggest that the C. elegans embryo is patterned by a juxtaposition of distinct lineage-specific gene regulatory programs each with a unique encoding of cell location and fate. This use of homologous gene regulatory patterning codes suggests a deep homology of cell fate specification programs across diverse modes of development.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular/genética , Linaje de la Célula/genética , Drosophila/genética , Tipificación del Cuerpo/genética , Embrión no Mamífero/metabolismo
9.
Nat Biotechnol ; 42(1): 18-19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191661
10.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37333372

RESUMEN

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.

11.
Science ; 382(6671): 653, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943930

RESUMEN

A philosopher reflects on his influential interrogations of free will, consciousness, and artificial intelligence.

12.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37786690

RESUMEN

Desmosomes are transmembrane protein complexes that contribute to cell-cell adhesion in epithelia and other tissues. Here, we report the discovery of frequent genetic alterations in the desmosome in human cancers, with the strongest signal seen in cutaneous melanoma where desmosomes are mutated in over 70% of cases. In primary but not metastatic melanoma biopsies, the burden of coding mutations on desmosome genes associates with a strong reduction in desmosome gene expression. Analysis by spatial transcriptomics suggests that these expression decreases occur in keratinocytes in the microenvironment rather than in primary melanoma tumor cells. In further support of a microenvironmental origin, we find that loss-of-function knockdowns of the desmosome in keratinocytes yield markedly increased proliferation of adjacent melanocytes in keratinocyte/melanocyte co-cultures. Thus, gradual accumulation of desmosome mutations in neighboring cells may prime melanocytes for neoplastic transformation.

14.
Res Sq ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034646

RESUMEN

Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. These modes interact with a changing cellular environment to yield highly dynamic expression patterns2. In bacteria, the relationship between a gene's regulatory architecture and its expression is well understood for individual model gene circuits3,4. However, a broader perspective of these dynamics at the genome-scale is lacking, in part because bacterial transcriptomics have hitherto captured only a static snapshot of expression averaged across millions of cells5. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on each gene's transcriptional response to its own replication, which we term the Transcription-Replication Interaction Profile (TRIP). We found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal a gene's local regulatory context. While the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, including altered timing or amplitude of expression, and this is shaped by factors such as intra-operon position, repression state, or presence on mobile genetic elements. Our transcriptome analysis also simultaneously captures global properties, such as the rates of replication and transcription, as well as the nestedness of replication patterns. This work challenges previous notions of the drivers of expression heterogeneity within a population of cells, and unearths a previously unseen world of gene transcription dynamics.

15.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37080161

RESUMEN

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Asunto(s)
Conducta de Masa , Neoplasias , Humanos , Comunicación
16.
Nat Biotechnol ; 41(4): 450-451, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36973558
17.
Mol Syst Biol ; 19(3): e11021, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36744393

RESUMEN

Group B Streptococcus (GBS) is a pathobiont that can ascend to the placenta and cause adverse pregnancy outcomes, in part through production of the toxin ß-hemolysin/cytolysin (ß-h/c). Innate immune cells have been implicated in the response to GBS infection, but the impact of ß-h/c on their response is poorly defined. We show that GBS modulates innate immune cell states by subversion of host inflammation through ß-h/c, allowing worse outcomes. We used an ascending mouse model of GBS infection to measure placental cell state changes over time following infection with a ß-h/c-deficient and isogenic wild type GBS strain. Transcriptomic analysis suggests that ß-h/c-producing GBS elicit a worse phenotype through suppression of host inflammatory signaling in placental macrophages and neutrophils, and comparison of human placental macrophages infected with the same strains recapitulates these results. Our findings have implications for identification of new targets in GBS disease to support host defense against pathogenic challenge.


Asunto(s)
Placenta , Infecciones Estreptocócicas , Ratones , Animales , Femenino , Embarazo , Humanos , Placenta/metabolismo , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Inflamación , Macrófagos , Infecciones Estreptocócicas/metabolismo
18.
Cell Rep ; 41(2): 111477, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223751

RESUMEN

Innate immune recognition of bacterial pathogens is a key determinant of the ensuing systemic response, and host or pathogen heterogeneity in this early interaction can impact the course of infection. To gain insight into host response heterogeneity, we investigate macrophage inflammatory dynamics using primary human macrophages infected with Group B Streptococcus. Transcriptomic analysis reveals discrete cellular states within responding macrophages, one of which consists of four sub-states, reflecting inflammatory activation. Infection with six additional bacterial species-Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Yersinia pseudotuberculosis, Shigella flexneri, and Salmonella enterica-recapitulates these states, though at different frequencies. We show that modulating the duration of infection and the presence of a toxin impacts inflammatory trajectory dynamics. We provide evidence for this trajectory in infected macrophages in an in vivo model of Staphylococcus aureus infection. Our cell-state analysis defines a framework for understanding inflammatory activation dynamics in response to bacterial infection.


Asunto(s)
Infecciones Bacterianas , Listeria monocytogenes , Infecciones Bacterianas/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Listeria monocytogenes/genética , Macrófagos , Shigella flexneri
19.
Cancer Cell ; 40(9): 895-900, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36099884

RESUMEN

Spatial transcriptomics, with other spatial technologies, has enabled scientists to dissect the organization and interaction of different cell types within the tumor microenvironment. We asked experts to discuss some aspects of this technology from revealing the tumor microenvironment and heterogeneity, to tracking tumor evolution, to guiding tumor therapy, to current technical challenges.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...