Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 3(5): 797-812, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30850386

RESUMEN

The oncolytic reovirus (RV) has demonstrated clinical efficacy and minimal toxicity in a variety of cancers, including multiple myeloma (MM). MM is a malignancy of plasma cells that is considered treatable but incurable because of the 90% relapse rate that is primarily from drug resistance. The systemic nature of MM and the antitumor immunosuppression by its tumor microenvironment presents an ongoing therapeutic challenge. In the present study, we demonstrate that RV synergizes with the standard-of-care MM drug bortezomib (BTZ) and, importantly, enhances its therapeutic potential in therapy-resistant human MM cell lines in vitro. Using the syngeneic Vk*MYC BTZ-resistant immunocompetent transplantable MM murine model, we also demonstrate that mice harboring BTZ-insensitive MM tumors respond to the RV/BTZ combination treatment in terms of decreased tumor burden and improved overall survival (P < .00001). We demonstrate that BTZ augments RV replication in tumor-associated endothelial cells and myeloma cells, leading to enhanced viral delivery and thereby stimulating cytokine release, immune activity, apoptosis, and reduction of the MM-associated immune suppression. We conclude that combined RV/BTZ is an attractive therapeutic strategy with no safety signals for the treatment of MM.


Asunto(s)
Bortezomib/uso terapéutico , Terapia Combinada/métodos , Inmunoterapia/métodos , Mieloma Múltiple/terapia , Viroterapia Oncolítica/métodos , Animales , Bortezomib/farmacología , Línea Celular Tumoral , Células Endoteliales/virología , Humanos , Ratones , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/mortalidad , Virus Oncolíticos/inmunología , Terapia Recuperativa/métodos , Replicación Viral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Mil Med ; 183(suppl_1): 207-215, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635617

RESUMEN

Objectives: Acute respiratory distress syndrome (ARDS) is caused by many factors including inhalation of toxicants, acute barotrauma, acid aspiration, and burns. Surfactant function is impaired in ARDS and acute airway injury resulting in high surface tension with alveolar and small airway collapse, edema, hypoxemia, and death. In this study, we explore the mechanisms whereby surfactant becomes dysfunctional in ARDS and bronchiolitis and its repair with a cyclodextrin drug that sequesters cholesterol. Methods: We used in vitro model systems, a mouse model of ARDS, and samples from patients with acute bronchiolitis. Surface tension was measured by captive bubble surfactometry. Results: Patient samples showed severe surfactant inhibition even in the absence of elevated cholesterol levels. Surfactant was also impaired in ARDS mice where the cholesterol to phospholipid ratio (W/W%) was increased. Methyl-ß-cyclodextrin (MßCD) restored surfactant function to normal in both human and animal samples. Model studies showed that the inhibition of surfactant was due to both elevated cholesterol and an interaction between cholesterol and oxidized phospholipids. MßCD was also shown to have anti-inflammatory effects. Conclusions: Inhaled cyclodextrins have potential for the treatment of ARDS. They could be delivered in a portable device carried in combat and used following exposure to toxic gases and fumes or shock secondary to hemorrhage and burns.


Asunto(s)
Enfermedades Pulmonares Intersticiales/etiología , Surfactantes Pulmonares/análisis , Síndrome de Dificultad Respiratoria/complicaciones , Adolescente , Alberta , Animales , Lavado Broncoalveolar/métodos , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Lesión Pulmonar/metabolismo , Lesión Pulmonar/fisiopatología , Masculino , Ratones , Proyectos Piloto , Surfactantes Pulmonares/aislamiento & purificación
3.
J Cyst Fibros ; 16(5): 565-572, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28599957

RESUMEN

BACKGROUND: Airway surfactant is impaired in cystic fibrosis (CF) and associated with declines in pulmonary function. We hypothesized that surfactant dysfunction in CF is due to an excess of cholesterol with an interaction with oxidation. METHODS: Surfactant was extracted from bronchial lavage fluid from children with CF and surface tension, and lipid content, inflammatory cells and microbial flora were determined. Dysfunctional surfactant samples were re-tested with a lipid-sequestering agent, methyl-ß-cyclodextrin (MßCD). RESULTS: CF surfactant samples were unable to sustain a normal low surface tension. MßCD restored surfactant function in a majority of samples.Mechanistic studies showed that the dysfunction was due to a combination of elevated cholesterol and an interaction with oxidized phospholipids and their pro-inflammatory hydrolysis products. CONCLUSION: We confirm that CF patients have impaired airway surfactant function which could be restored with MßCD. These findings have implications for improving lung function and mitigating inflammation in patients with CF.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Colesterol , Fibrosis Quística , Enfermedades Pulmonares Intersticiales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/microbiología , Broncoscopía/métodos , Niño , Preescolar , Colesterol/análisis , Colesterol/metabolismo , Fibrosis Quística/diagnóstico , Fibrosis Quística/metabolismo , Fibrosis Quística/fisiopatología , Femenino , Humanos , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/metabolismo , Masculino , Oxidación-Reducción , Pruebas de Función Respiratoria/métodos , Propiedades de Superficie , beta-Ciclodextrinas/farmacología
4.
Oncol Lett ; 7(4): 1260-1264, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24660037

RESUMEN

Low-dose 5-fluorouracil (5-FU), a widely used chemotherapeutic, has been reported to have immunomodulatory effects. This study aimed to evaluate the optimal dose of 5-FU that produces antitumor and immunomodulatory effects. In a hepatoma 22 tumor-bearing mouse model, 0, 10, 20 and 40 mg/kg 5-FU (i.p.) was administered for 10 days. Tumor weight and volume were measured, thymus index (TI) and spleen index (SI) were calculated, and the number of white blood cells (WBCs) and lymphocytes (LYs) were counted following treatment. The percentages of CD3+, CD4+, CD8+ and natural killer (NK) cells were measured by flow cytometry. In addition, the body weights of the mice were measured and the average diet consumption was calculated. Administration of 5-FU produced a potent antitumor effect in a dose-dependent manner (P<0.01). At 20 and 40 mg/kg, a significant reduction of body weight and food consumption was observed. TI and SI decreased in the 20- and 40-mg/kg groups (P<0.01) for 10 days. The number of WBCs significantly decreased in each group (P<0.01); however, the number of LYs only decreased in the 40-mg/kg group (P<0.01). Percentages of CD3+ and CD4+ cells were increased in the 10- and 20-mg/kg groups (P<0.01). Thus, 5-FU at 10 mg/kg inhibits tumor growth while maintaining the immune function of the mice. 5-FU may exert its antitumor effect at a low dose with low toxicity and stimulate the host immune system. Future clinical trials taking into account the immunostimulatory capacity of chemotherapeutic agents are desirable for certain patients.

5.
J Immunol ; 186(12): 6798-806, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21593382

RESUMEN

Adenosine has been established as an important regulator of immune activation. It signals through P1 adenosine receptors to suppress activation of T cells and professional APCs. Adenosine deaminase (ADA) counters this effect by catabolizing adenosine. This regulatory mechanism has not been tested in a disease model in vivo. Questions also remain as to which cell types are most sensitive to this regulation and whether its dysregulation contributes to any autoimmune conditions. We approached this issue using the NOD model. We report that ADA is upregulated in NOD dendritic cells, which results in their exuberant and spontaneous activation. This, in turn, triggers autoimmune T cell activation. NOD DCs deficient in ADA expression have a greatly reduced capacity to trigger type I diabetes. We also provide evidence that although many cell types, particularly T cells, have been implicated as the suppression targets by adenosine in an in vitro setting, DCs also seem to be affected by this regulatory mechanism. Therefore, this report illustrates a role of ADA in autoimmunity and suggests a potential target for therapeutic intervention.


Asunto(s)
Adenosina Desaminasa/inmunología , Autoinmunidad/inmunología , Células Dendríticas/enzimología , Diabetes Mellitus/inmunología , Activación de Linfocitos , Linfocitos T/inmunología , Adenosina Desaminasa/análisis , Animales , Células Dendríticas/inmunología , Diabetes Mellitus/etiología , Ratones , Ratones Endogámicos NOD
6.
Eur J Immunol ; 40(2): 449-59, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19950175

RESUMEN

Adenosine has long been regarded as a crucial anti-inflammatory agent that protects the host from excessive damage. It has been reported to play an important role in suppressing immune activation, particularly that of T cells. However, it is a general observation that induction of T-cell activation is an efficient event despite the high adenosine levels that are often present in the affected host due to injury or stress. We report here that prior to antigenic stimulation via TCR/CD3, exposure of T cells to adenosine desensitizes adenosine receptors, so as to create a window of time where the T cells are insensitive to this ubiquitous suppressor. T cells from mice that were pre-exposed to this manipulation showed stronger responses to antigenic stimulation; therefore, the P1 adenosine receptor desensitization demonstrated an adjuvant-like effect. Our results suggest that adenosine receptor desensitization may be a mechanism for T cells to escape the general suppression during early points of T-cell activation and may emerge as a potential alternative for vaccine adjuvants.


Asunto(s)
Adenosina/farmacología , AMP Cíclico/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Adenosina/análogos & derivados , Agonistas del Receptor de Adenosina A1 , Antagonistas del Receptor de Adenosina A1 , Agonistas del Receptor de Adenosina A2 , Antagonistas del Receptor de Adenosina A2 , Adenosina-5'-(N-etilcarboxamida)/farmacología , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptor de Adenosina A1/genética , Receptor de Adenosina A2A/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/citología , Linfocitos T/citología , Linfocitos T/metabolismo , Xantinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...