Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nat Metab ; 6(1): 113-126, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38167727

RESUMEN

Chronic stress and inflammation are both outcomes and major drivers of many human diseases. Sustained responsiveness despite mitigation suggests a failure to sense resolution of the stressor. Here we show that a proteolytic cleavage event of fatty acid synthase (FASN) activates a global cue for stress resolution in Caenorhabditis elegans. FASN is well established for biosynthesis of the fatty acid palmitate. Our results demonstrate FASN promoting an anti-inflammatory profile apart from palmitate synthesis. Redox-dependent proteolysis of limited amounts of FASN by caspase activates a C-terminal fragment sufficient to downregulate multiple aspects of stress responsiveness, including gene expression, metabolic programs and lipid droplets. The FASN C-terminal fragment signals stress resolution in a cell non-autonomous manner. Consistent with these findings, FASN processing is also seen in well-fed but not fasted male mouse liver. As downregulation of stress responses is critical to health, our findings provide a potential pathway to control diverse aspects of stress responses.


Asunto(s)
Ácido Graso Sintasas , Ácidos Grasos , Animales , Masculino , Ratones , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Palmitatos , Proteolisis , Caenorhabditis elegans , Acido Graso Sintasa Tipo I
3.
BMC Genom Data ; 24(1): 72, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017423

RESUMEN

BACKGROUND: Our previous research identified the Kruppel like factor 6 (KLF6) gene as a prospective candidate for milk production traits in dairy cattle. The expression of KLF6 in the livers of Holstein cows during the peak of lactation was significantly higher than that during the dry and early lactation periods. Notably, it plays an essential role in activating peroxisome proliferator-activated receptor α (PPARα) signaling pathways. The primary aim of this study was to further substantiate whether the KLF6 gene has significant genetic effects on milk traits in dairy cattle. RESULTS: Through direct sequencing of PCR products with pooled DNA, we totally identified 12 single nucleotide polymorphisms (SNPs) within the KLF6 gene. The set of SNPs encompasses 7 located in 5' flanking region, 2 located in exon 2 and 3 located in 3' untranslated region (UTR). Of these, the g.44601035G > A is a missense mutation that resulting in the replacement of arginine (CGG) with glutamine (CAG), consequently leading to alterations in the secondary structure of the KLF6 protein, as predicted by SOPMA. The remaining 7 regulatory SNPs significantly impacted the transcriptional activity of KLF6 following mutation (P < 0.005), manifesting as changes in transcription factor binding sites. Additionally, 4 SNPs located in both the UTR and exons were predicted to influence the secondary structure of KLF6 mRNA using the RNAfold web server. Furthermore, we performed the genotype-phenotype association analysis using SAS 9.2 which found all the 12 SNPs were significantly correlated to milk yield, fat yield, fat percentage, protein yield and protein percentage within both the first and second lactations (P < 0.0001 ~ 0.0441). Also, with Haploview 4.2 software, we found the 12 SNPs linked closely and formed a haplotype block, which was strongly associated with five milk traits (P < 0.0001 ~ 0.0203). CONCLUSIONS: In summary, our study represented the KLF6 gene has significant impacts on milk yield and composition traits in dairy cattle. Among the identified SNPs, 7 were implicated in modulating milk traits by impacting transcriptional activity, 4 by altering mRNA secondary structure, and 1 by affecting the protein secondary structure of KLF6. These findings provided valuable molecular insights for genomic selection program of dairy cattle.


Asunto(s)
Leche , Polimorfismo de Nucleótido Simple , Femenino , Bovinos/genética , Animales , Leche/metabolismo , Polimorfismo de Nucleótido Simple/genética , Lactancia/genética , Fenotipo , ARN Mensajero
4.
Commun Biol ; 6(1): 1084, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880317

RESUMEN

Dimethyl fumarate is an ester from the Krebs cycle intermediate fumarate. This drug is approved and currently used for the treatment of psoriasis and multiple sclerosis, and its anti-angiogenic activity was reported some years ago. Due to the current clinical relevance of this compound and the recently manifested importance of endothelial cell metabolism on the angiogenic switch, we wanted to elucidate whether dimethyl fumarate has an effect on energetic metabolism of endothelial cells. Different experimental approximations were performed in endothelial cells, including proteomics, isotope tracing and metabolomics experimental approaches, in this work we studied the possible role of dimethyl fumarate in endothelial cell energetic metabolism. We demonstrate for the first time that dimethyl fumarate promotes glycolysis and diminishes cell respiration in endothelial cells, which could be a consequence of a down-regulation of serine and glycine synthesis through inhibition of PHGDH activity in these cells. Dimethyl fumarate alters the energetic metabolism of endothelial cells in vitro and in vivo through an unknown mechanism, which could be the cause or the consequence of its pharmacological activity. This new discovery on the targets of this compound could open a new field of study regarding the mechanism of action of dimethyl fumarate.


Asunto(s)
Dimetilfumarato , Esclerosis Múltiple , Humanos , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Células Endoteliales/metabolismo , Fumaratos/farmacología , Fumaratos/uso terapéutico , Regulación hacia Abajo
5.
Cell Metab ; 35(10): 1830-1843.e5, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37611583

RESUMEN

Stable isotopes are powerful tools to assess metabolism. 13C labeling is detected using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS). MS has excellent sensitivity but generally cannot discriminate among different 13C positions (isotopomers), whereas NMR is less sensitive but reports some isotopomers. Here, we develop an MS method that reports all 16 aspartate and 32 glutamate isotopomers while requiring less than 1% of the sample used for NMR. This method discriminates between pathways that result in the same number of 13C labels in aspartate and glutamate, providing enhanced specificity over conventional MS. We demonstrate regional metabolic heterogeneity within human tumors, document the impact of fumarate hydratase (FH) deficiency in human renal cancers, and investigate the contributions of tricarboxylic acid (TCA) cycle turnover and CO2 recycling to isotope labeling in vivo. This method can accompany NMR or standard MS to provide outstanding sensitivity in isotope-labeling experiments, particularly in vivo.


Asunto(s)
Ácido Aspártico , Ácido Glutámico , Humanos , Isótopos de Carbono , Ciclo del Ácido Cítrico , Espectrometría de Masas
6.
J Mater Chem B ; 11(28): 6560-6566, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37351848

RESUMEN

Developing safe, high-quality theranostic agents for cancer treatment is of great clinical value. In this work, for the first time, the clinical indocyanine green (ICG) is coupled with the biocompatible poly(styrene-alt-maleic anhydride) (PSMAn) to obtain the PSMAn-ICG polymer. The self-assembly of its hydrolyzed product in water results in ICG-conjugated poly(styrene-alt-maleic acid) nanoparticles (PSMA-ICG NPs). Intriguingly, the NPs have many advantages, including good solubility and stability in aqueous solutions, high photostability and decreased hemolytic damage to red blood cells, highlighting the importance of PSMA coupling. More interestingly, PSMA-ICG NPs significantly promote tumor targeting and enable long-term imaging of tumors. Furthermore, the administration of PSMA-ICG NPs in combination with near-infrared laser irradiation provides superior potency in the photothermal therapy of tumors. Furthermore, 9-amino-sialic acid (Sia)-coated PSMA-ICG NPs are fabricated, further enhancing tumor imaging and phototherapy. This is the first report of PSMA-NIR conjugates achieving tumor reduction in mice. Overall, this study provides novel phototheranostic agents with broad clinical transformation prospects.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Estireno/uso terapéutico , Nanomedicina Teranóstica , Fototerapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico
7.
Environ Sci Pollut Res Int ; 30(17): 48778-48792, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36879093

RESUMEN

Quinolone (QN) antibiotics are a kind of broad-spectrum antibiotics commonly used in the treatment of human and animal diseases. They have the characteristics of strong antibacterial activity, stable metabolism, low production cost, and no cross-resistance with other antibacterial drugs. They are widely used in the world. QN antibiotics cannot be completely digested and absorbed in organisms and are often excreted in urine and feces in the form of original drugs or metabolites, which are widely occurring in surface water, groundwater, aquaculture wastewater, sewage treatment plants, sediments, and soil environment, thus causing environmental pollution. In this paper, the pollution status, biological toxicity, and removal methods of QN antibiotics at home and abroad were reviewed. Literature data showed that QNs and its metabolites had serious ecotoxicity. Meanwhile, the spread of drug resistance induced by continuous emission of QNs should not be ignored. In addition, adsorption, chemical oxidation, photocatalysis, and microbial removal of QNs are often affected by a variety of experimental conditions, and the removal is not complete, so it is necessary to combine a variety of processes to efficiently remove QNs in the future.


Asunto(s)
Quinolonas , Contaminantes Químicos del Agua , Animales , Humanos , Quinolonas/análisis , Antibacterianos/química , Aguas Residuales , Contaminación de Medicamentos , Suelo , Contaminantes Químicos del Agua/análisis
8.
R Soc Open Sci ; 10(1): 220607, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36636310

RESUMEN

A thorough understanding of the changes in mechanical property behind intracellular biophysical and biochemical processes during differentiation of human mesenchymal stem cells (hMSCs) is helpful to direct and enhance the commitment of cells to a particular lineage. In this study, displacement creep of the mesenchymal cell lineages (osteogenic, chondrogenic and adipogenic hMSCs) were determined by using atomic force microscopy, which was then used to determine their mechanical properties. We found that at any stages of differentiation, the mesenchymal cell lineages are linear viscoelastic materials and well matched with a simple power-law creep compliance. In addition, the viscoelasticity of mesenchymal cell lineages showed different trends during differentiation. The adipogenic hMSCs showed continuous softening at all stages. The osteogenic and chondrogenic hMSCs only continuously soften and become more fluid-like in the early stage of differentiation, and get stiffened and less fluid-like in the later stage. These findings will help more accurately imitate cellular biomechanics in the microenvironment, and provided an important reference in the biophysics biomimetic design of stem cell differentiation.

9.
Adv Sci (Weinh) ; 10(2): e2204598, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398611

RESUMEN

Major diseases, such as cancer and COVID-19, are frightening global health problems, and sustained action is necessary to develop vaccines. Here, for the first time, ethoxy acetalated dextran nanoparticles (Ace-Dex-NPs) are functionalized with 9-N-(4H-thieno[3,2-c]chromene-2-carbamoyl)-Siaα2-3Galß1-4GlcNAc (TCC Sia-LacNAc) targeting macrophages as a universal vaccine design platform. First, azide-containing oxidized Ace-Dex-NPs are synthesized. After the NPs are conjugated with ovalbumin (OVA) and resiquimod (Rd), they are coupled to TCC Sia-LacNAc-DBCO to produce TCC Sia-Ace-Dex-OVA-Rd, which induce a potent, long-lasting OVA-specific cytotoxic T-lymphocyte (CTL) response and high anti-OVA IgG, providing mice with superior protection against tumors. Next, this strategy is exploited to develop vaccines against infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target for neutralizing antibodies. The TCC Sia-Ace-Dex platform is preferentially used for designing an RBD-based vaccine. Strikingly, the synthetic TCC Sia-Ace-Dex-RBD-Rd elicited potent RBD-neutralizing antibodies against live SARS-CoV-2 infected Vero E6 cells. To develop a universal SARS-CoV-2 vaccine, the TCC Sia-Ace-Dex-N-Rd vaccine carrying SARS-CoV-2 nucleocapsid protein (N) is also prepared, which is highly conserved among SARS-CoV-2 and its variants of concern (VOCs), including Omicron (BA.1 to BA.5); this vaccine can trigger strong N-specific CTL responses against target cells infected with SARS-CoV-2 and its VOCs.


Asunto(s)
COVID-19 , Vacunas , Animales , Humanos , Ratones , Vacunas contra la COVID-19 , Ligandos , SARS-CoV-2 , Ovalbúmina , Anticuerpos Neutralizantes
10.
bioRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168314

RESUMEN

Metabolomic profiling is instrumental in understanding the systemic and cellular impact of inborn errors of metabolism (IEMs), monogenic disorders caused by pathogenic genomic variants in genes involved in metabolism. This study encompasses untargeted metabolomics analysis of plasma from 474 individuals and fibroblasts from 67 subjects, incorporating healthy controls, patients with 65 different monogenic diseases, and numerous undiagnosed cases. We introduce a web application designed for the in-depth exploration of this extensive metabolomics database. The application offers a user-friendly interface for data review, download, and detailed analysis of metabolic deviations linked to IEMs at the level of individual patients or groups of patients with the same diagnosis. It also provides interactive tools for investigating metabolic relationships and offers comparative analyses of plasma and fibroblast profiles. This tool emphasizes the metabolic interplay within and across biological matrices, enriching our understanding of metabolic regulation in health and disease. As a resource, the application provides broad utility in research, offering novel insights into metabolic pathways and their alterations in various disorders.

11.
J Transl Med ; 20(1): 555, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463272

RESUMEN

BACKGROUND: Solid tumors are stiffer than their surrounding normal tissues; however, their interior stiffness is not uniform. Under certain conditions, cancer cells can acquire stem-like phenotypes. However, it remains unclear how the heterogeneous physical microenvironment affects stemness expression in cancer cells. Here, we aimed to evaluate matrix stiffness heterogeneity in hepatocellular carcinoma (HCC) tissues and to explore the regulation effect of the tumor microenvironment on stem-like phenotypic changes through mechanical transduction. METHODS: First, we used atomic force microscopy (AFM) to evaluate the elastic modulus of HCC tissues. We then used hydrogel with adjustable stiffness to investigate the effect of matrix stiffness on the stem-like phenotype expression of HCC cells. Moreover, cells cultured on hydrogel with different stiffness were subjected to morphology, real-time PCR, western blotting, and immunofluorescence analyses to explore the mechanotransduction pathway. Finally, animal models were used to validate in vitro results. RESULTS: AFM results confirmed the heterogenous matrix stiffness in HCC tissue. Cancer cells adhered to hydrogel with varying stiffness (1.10 ± 0.34 kPa, 4.47 ± 1.19 kPa, and 10.61 kPa) exhibited different cellular and cytoskeleton morphology. Higher matrix stiffness promoted the stem-like phenotype expression and reduced sorafenib-induced apoptosis. In contrast, lower stiffness induced the expression of proliferation-related protein Ki67. Moreover, mechanical signals were transmitted into cells through the integrin-yes-associated protein (YAP) pathway. Higher matrix stiffness did not affect YAP expression, however, reduced the proportion of phosphorylated YAP, promoted YAP nuclear translocation, and regulated gene transcription. Finally, application of ATN-161 (integrin inhibitor) and verteporfin (YAP inhibitor) effectively blocked the stem-like phenotype expression regulated by matrix stiffness. CONCLUSIONS: Our experiments provide new insights into the interaction between matrix stiffness, cancer cell stemness, and heterogeneity, while also providing a novel HCC therapeutic strategy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Mecanotransducción Celular , Neoplasias Hepáticas/genética , Fenotipo , Hidrogeles , Microambiente Tumoral
12.
Sci Adv ; 8(35): eabn9550, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044570

RESUMEN

In mice and humans with cancer, intravenous 13C-glucose infusion results in 13C labeling of tumor tricarboxylic acid (TCA) cycle intermediates, indicating that pyruvate oxidation in the TCA cycle occurs in tumors. The TCA cycle is usually coupled to the electron transport chain (ETC) because NADH generated by the cycle is reoxidized to NAD+ by the ETC. However, 13C labeling does not directly report ETC activity, and other pathways can oxidize NADH, so the ETC's role in these labeling patterns is unverified. We examined the impact of the ETC complex I inhibitor IACS-010759 on tumor 13C labeling. IACS-010759 suppresses TCA cycle labeling from glucose or lactate and increases labeling from glutamine. Cancer cells expressing yeast NADH dehydrogenase-1, which recycles NADH to NAD+ independently of complex I, display normalized labeling when complex I is inhibited, indicating that cancer cell ETC activity regulates TCA cycle metabolism and 13C labeling from multiple nutrients.


Asunto(s)
Complejo I de Transporte de Electrón , Glucosa , Glutamina , Neoplasias , Animales , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Isótopos , Ratones , NAD/metabolismo , Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110412

RESUMEN

The pentose phosphate pathway is a major source of NADPH for oxidative stress resistance in cancer cells but there is limited insight into its role in metastasis, when some cancer cells experience high levels of oxidative stress. To address this, we mutated the substrate binding site of glucose 6-phosphate dehydrogenase (G6PD), which catalyzes the first step of the pentose phosphate pathway, in patient-derived melanomas. G6PD mutant melanomas had significantly decreased G6PD enzymatic activity and depletion of intermediates in the oxidative pentose phosphate pathway. Reduced G6PD function had little effect on the formation of primary subcutaneous tumors, but when these tumors spontaneously metastasized, the frequency of circulating melanoma cells in the blood and metastatic disease burden were significantly reduced. G6PD mutant melanomas exhibited increased levels of reactive oxygen species, decreased NADPH levels, and depleted glutathione as compared to control melanomas. G6PD mutant melanomas compensated for this increase in oxidative stress by increasing malic enzyme activity and glutamine consumption. This generated a new metabolic vulnerability as G6PD mutant melanomas were more dependent upon glutaminase than control melanomas, both for oxidative stress management and anaplerosis. The oxidative pentose phosphate pathway, malic enzyme, and glutaminolysis thus confer layered protection against oxidative stress during metastasis.


Asunto(s)
Glucosafosfato Deshidrogenasa/metabolismo , Glutamina/metabolismo , Melanoma/metabolismo , Estrés Oxidativo/fisiología , Animales , Humanos , Ratones , Ratones Endogámicos NOD , NADP/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato/fisiología , Especies Reactivas de Oxígeno/metabolismo
14.
Front Physiol ; 12: 684121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539426

RESUMEN

Hepatic steatosis is associated with various liver diseases. The main pathological feature of steatosis is the excessive lipid accumulation. Ultrasound has been extensively used for the diagnosis of hepatic steatosis. However, most ultrasound-based non-invasive methods are still not accurate enough for cases with light lipid infiltration. One important reason is that the extent to which lipid infiltration may affect mechanical properties of hepatocytes remains unknown. In this work, we used atomic force microscope and in vitro dose-dependent lipid deposition model to detect the quantitative changes of mechanical properties under different degrees of steatosis in a single-cell level. The results show that hepatic cells with lipid deposition can be treated as linear viscoelastic materials with the power law creep compliance and relaxation modulus. Further analysis showed that even slight accumulation of lipid can lead to measurable decrease of stiffness and increased fluidity in liver cells. The accurate detection of viscoelastic properties of hepatocytes and the analysis methods may provide novel insights into hepatic steatosis grading, especially in the very early stage with reversible liver lesion. The application of viscoelasticity index for grading fat deposition might be a new detection indicator in future clinical diagnosis.

15.
Front Pharmacol ; 12: 674340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335248

RESUMEN

Inflammatory bowel disease (IBD) is an important high-risk factor that promotes the occurrence and development of colon cancer. Research on the mechanism of regulating NLRP3 can provide potential targets for treating NLRP3 inflammasome-related diseases and changing the inflammatory potential of immune cells. In this study, the effects of atractylenolide I on colitis-associated CRC (caCRC) and inflammasome activation were investigated both in vivo and in vitro. Furthermore, the role of atractylenolide I on Drp1-mediated mitochondrial fission was analyzed via Western blotting and transmission electron microscopy (TEM). Moreover, the Drp1 overexpression lentiviral vector was used to study the role of Drp1 on the signaling mechanisms of atractylenolide I. Atractylenolide I treatment significantly reduced the cell viability of human HCT116 and SW480 cells and induced apoptosis, and effectively inhibited colon tumors in the AOM/DSS mouse model. The reduction of NLRP3 inflammasome activation and excessive fission of mitochondria mediated by Drp1 were associated with the administration of atractylenolide I. Upregulation of Drp1 reversed the inhibitory effect of atractylenolide I on the activation of NLRP3 inflammasomes. Overexpressing the Drp1 expression counteracted the restraint of atractylenolide I on the release of IL-1ß of LPS/DSS-stimulated BMDMs. Atractylenolide I inhibited NLRP3 and caspase-1 expression in mice BMDMs, with no influence in the Drp1-overexpressed BMDMs. These results demonstrated that atractylenolide I inhibits NLRP3 inflammasome activation in colitis-associated colorectal cancer via suppressing Drp1-mediated mitochondrial fission.

16.
J Inherit Metab Dis ; 44(4): 949-960, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33855712

RESUMEN

Glutamyl-tRNA synthetase 2 (encoded by EARS2) is a mitochondrial aminoacyl-tRNA synthetase required to translate the 13 subunits of the electron transport chain encoded by the mitochondrial DNA. Pathogenic EARS2 variants cause combined oxidative phosphorylation deficiency, subtype 12 (COXPD12), an autosomal recessive disorder involving lactic acidosis, intellectual disability, and other features of mitochondrial compromise. Patients with EARS2 deficiency present with variable phenotypes ranging from neonatal lethality to a mitigated disease with clinical improvement in early childhood. Here, we report a neonate homozygous for a rare pathogenic variant in EARS2 (c.949G>T; p.G317C). Metabolomics in primary fibroblasts from this patient revealed expected abnormalities in TCA cycle metabolites, as well as numerous changes in purine, pyrimidine, and fatty acid metabolism. To examine genotype-phenotype correlations in COXPD12, we compared the metabolic impact of reconstituting these fibroblasts with wild-type EARS2 versus four additional EARS2 variants from COXPD12 patients with varying clinical severity. Metabolomics identified a group of signature metabolites, mostly from the TCA cycle and amino acid metabolism, that discriminate between EARS2 variants causing relatively mild and severe COXPD12. Taken together, these findings indicate that metabolomics in patient-derived fibroblasts may help establish genotype-phenotype correlations in EARS2 deficiency and likely other mitochondrial disorders.


Asunto(s)
Variación Genética/genética , Glutamato-ARNt Ligasa/genética , Leucoencefalopatías/genética , Errores Innatos del Metabolismo/genética , Acidosis Láctica/etiología , Aminoacil-ARNt Sintetasas/genética , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Glutamato-ARNt Ligasa/metabolismo , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/etiología , Leucoencefalopatías/metabolismo , Masculino , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación
17.
Arch Environ Contam Toxicol ; 80(3): 519-530, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33740088

RESUMEN

Ninety-five wild forage plants (belonging to 22 species of 18 families) and their corresponding rhizosphere soil samples were collected from wastelands of a large-scale abandoned Hg mining region for total Hg (THg) and methylmercury (MeHg) analysis. The forage plant communities on the wastelands were dominated by the Asteraceae, Crassulaceae, and Polygonaceae families. The THg and MeHg concentrations in the forage plants varied widely and were in the range of 0.10 to 13 mg/kg and 0.19 to 23 µg/kg, respectively. Shoots of Aster ageratoides showed the highest average THg concentration of 12 ± 1.1 mg/kg, while those of Aster subulatus had the highest average MeHg concentrations of 7.4 ± 6.1 µg/kg. Both the THg and MeHg concentrations in the aboveground plant parts exhibited positive correlations with the THg (r = 0.70, P < 0.01) and MeHg (r = 0.68, P < 0.01) concentrations in the roots; however, these were not correlated with the THg and MeHg concentrations in their rhizosphere soils. The species A. ageratoides, A. subulatus, and S. brachyotus showed strong accumulation of Hg and are of concern for herbivorous/omnivorous wildlife and feeding livestock. Taking the provisional tolerable weekly intake (PTWI) values for IHg recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA in Summary and conclusions of the seventy-second meeting of the joint FAO/WHO expert committee on food additives Rome, Italy, 2010) for human dietary exposure of 4 ng/g into account, the daily intake of IHg by a 65 kg animal grazing on 1.0 kg of forage (dry weight) would be between 190 and 13,200 µg, three to five orders of magnitude higher than the permitted limit, suggesting a potential risk of exposure.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Animales , Monitoreo del Ambiente , Humanos , Italia , Mercurio/análisis , Minería
18.
Commun Biol ; 4(1): 314, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750914

RESUMEN

Small cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a subset of SCLC has been termed "variant" due to the loss of NE characteristics. In this study, we computed NE scores for patient-derived SCLC cell lines and xenografts, as well as human tumors. We aligned NE properties with transcription factor-defined molecular subtypes. Then we investigated the different immune phenotypes associated with high and low NE scores. We found repression of immune response genes as a shared feature between classic SCLC and pulmonary neuroendocrine cells of the healthy lung. With loss of NE fate, variant SCLC tumors regain cell-autonomous immune gene expression and exhibit higher tumor-immune interactions. Pan-cancer analysis revealed this NE lineage-specific immune phenotype in other cancers. Additionally, we observed MHC I re-expression in SCLC upon development of chemoresistance. These findings may help guide the design of treatment regimens in SCLC.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Pulmonares/genética , Tumores Neuroendocrinos/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Transcriptoma , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Linaje de la Célula , Resistencia a Antineoplásicos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes MHC Clase I , Humanos , Inmunofenotipificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/inmunología , Tumores Neuroendocrinos/patología , Fenotipo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/inmunología , Carcinoma Pulmonar de Células Pequeñas/patología , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Anal Sens ; 1(4): 196-202, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35693130

RESUMEN

The interplay between glycolysis and gluconeogenesis is central to carbohydrate metabolism. Here, we describe novel methods to assess carbohydrate metabolism using [13C]-probes derived from glycerate, a molecule whose metabolic fate in mammals remains underexplored. Isotope-based studies were conducted via NMR and mass spectrometry analyses of freeze-clamped liver tissue extracts after [2,3-13C2]glycerate infusion. The ex vivo investigations were correlated with in vivo measurements using hyperpolarized [1-13C]glycerate. Application of [13C]glycerate to N-nitrosodiethylamine (DEN)-treated rats provided further assessments of intermediary carbohydrate metabolism in hepatocellular carcinoma. This method afforded direct analyses of control versus DEN tissues, and altered ratios of 13C metabolic products as well as unique glycolysis intermediates were observed in the DEN liver/tumor. Isotopomer studies showed increased glycerate uptake and altered carbohydrate metabolism in the DEN rats.

20.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33079728

RESUMEN

MYC stimulates both metabolism and protein synthesis, but how cells coordinate these complementary programs is unknown. Previous work reported that, in a subset of small-cell lung cancer (SCLC) cell lines, MYC activates guanosine triphosphate (GTP) synthesis and results in sensitivity to inhibitors of the GTP synthesis enzyme inosine monophosphate dehydrogenase (IMPDH). Here, we demonstrated that primary MYChi human SCLC tumors also contained abundant guanosine nucleotides. We also found that elevated MYC in SCLCs with acquired chemoresistance rendered these otherwise recalcitrant tumors dependent on IMPDH. Unexpectedly, our data indicated that IMPDH linked the metabolic and protein synthesis outputs of oncogenic MYC. Coexpression analysis placed IMPDH within the MYC-driven ribosome program, and GTP depletion prevented RNA polymerase I (Pol I) from localizing to ribosomal DNA. Furthermore, the GTPases GPN1 and GPN3 were upregulated by MYC and directed Pol I to ribosomal DNA. Constitutively GTP-bound GPN1/3 mutants mitigated the effect of GTP depletion on Pol I, protecting chemoresistant SCLC cells from IMPDH inhibition. GTP therefore functioned as a metabolic gate tethering MYC-dependent ribosome biogenesis to nucleotide sufficiency through GPN1 and GPN3. IMPDH dependence is a targetable vulnerability in chemoresistant MYChi SCLC.


Asunto(s)
Guanosina Trifosfato/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ribosomas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Animales , Línea Celular Tumoral , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Mutación , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Ribosomas/genética , Ribosomas/patología , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA