Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5839, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992011

RESUMEN

3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity. We propose a one-shot strategy for the fabrication of PEDOT:PSS ink that is able to simultaneously achieve on-demand biocompatibility (no post treatment), structural integrity during 3D printing for tall three-dimensional structures, and high conductivity for rapid-prototyping. By using ionic liquid-facilitated PEDOT:PSS colloidal stacking induced by a centrifugal protocol, a viscoplastic PEDOT:PSS-ionic liquid colloidal (PILC) ink was developed. PILC inks exhibit high-aspect ratio vertical stacking, omnidirectional printability for generating suspended architectures, high conductivity (~286 S/cm), and high-resolution printing (~50 µm). We demonstrate the on-demand and versatile applicability of PILC inks through the fabrication of 3D circuit boards, on-skin physiological signal monitoring e-tattoos, and implantable bioelectronics (opto-electrocorticography recording, low voltage sciatic nerve stimulation and recording from deeper brain layers via 3D vertical spike arrays).


Asunto(s)
Materiales Biocompatibles , Coloides , Conductividad Eléctrica , Líquidos Iónicos , Poliestirenos , Impresión Tridimensional , Líquidos Iónicos/química , Coloides/química , Materiales Biocompatibles/química , Animales , Poliestirenos/química , Ratas , Tinta , Polímeros/química , Tiofenos/química , Neuronas/fisiología , Compuestos Bicíclicos Heterocíclicos con Puentes/química
2.
Adv Sci (Weinh) ; 10(15): e2206186, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36995044

RESUMEN

Fiber-based implantable electronics are one of promising candidates for in vivo biomedical applications thanks to their unique structural advantages. However, development of fiber-based implantable electronic devices with biodegradable capability remains a challenge due to the lack of biodegradable fiber electrodes with high electrical and mechanical properties. Here, a biocompatible and biodegradable fiber electrode which simultaneously exhibits high electrical conductivity and mechanical robustness is presented. The fiber electrode is fabricated through a facile approach that incorporates a large amount of Mo microparticles into outermost volume of a biodegradable polycaprolactone (PCL) fiber scaffold in a concentrated manner. The biodegradable fiber electrode simultaneously exhibits a remarkable electrical performance (≈43.5 Ω cm-1 ), mechanical robustness, bending stability, and durability for more than 4000 bending cycles based on the Mo/PCL conductive layer and intact PCL core in the fiber electrode. The electrical behavior of the biodegradable fiber electrode under the bending deformation is analyzed by an analytical prediction and a numerical simulation. In addition, the biocompatible properties and degradation behavior of the fiber electrode are systematically investigated. The potential of biodegradable fiber electrode is demonstrated in various applications such as an interconnect, a suturable temperature sensor, and an in vivo electrical stimulator.

3.
Adv Mater ; 34(32): e2204159, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35702762

RESUMEN

Conventional electronic (e-) skins are a class of thin-film electronics mainly fabricated in laboratories or factories, which is incapable of rapid and simple customization for personalized healthcare. Here a new class of e-tattoos is introduced that can be directly implemented on the skin by facile one-step coating with various designs at multi-scale depending on the purpose of the user without a substrate. An e-tattoo is realized by attaching Pt-decorated carbon nanotubes on gallium-based liquid-metal particles (CMP) to impose intrinsic electrical conductivity and mechanical durability. Tuning the CMP suspension to have low-zeta potential, excellent wettability, and high-vapor pressure enables conformal and intimate assembly of particles directly on the skin in 10 s. Low-cost, ease of preparation, on-skin compatibility, and multifunctionality of CMP make it highly suitable for e-tattoos. Demonstrations of electrical muscle stimulators, photothermal patches, motion artifact-free electrophysiological sensors, and electrochemical biosensors validate the simplicity, versatility, and reliability of the e-tattoo-based approach in biomedical engineering.


Asunto(s)
Galio , Nanotubos de Carbono , Tatuaje , Atención a la Salud , Conductividad Eléctrica , Electrónica , Reproducibilidad de los Resultados
4.
Nat Commun ; 13(1): 2643, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551193

RESUMEN

Liquid metal is being regarded as a promising material for soft electronics owing to its distinct combination of high electrical conductivity comparable to that of metals and exceptional deformability derived from its liquid state. However, the applicability of liquid metal is still limited due to the difficulty in simultaneously achieving its mechanical stability and initial conductivity. Furthermore, reliable and rapid patterning of stable liquid metal directly on various soft substrates at high-resolution remains a formidable challenge. In this work, meniscus-guided printing of ink containing polyelectrolyte-attached liquid metal microgranular-particle in an aqueous solvent to generate semi-solid-state liquid metal is presented. Liquid metal microgranular-particle printed in the evaporative regime is mechanically stable, initially conductive, and patternable down to 50 µm on various substrates. Demonstrations of the ultrastretchable (~500% strain) electrical circuit, customized e-skin, and zero-waste ECG sensor validate the simplicity, versatility, and reliability of this manufacturing strategy, enabling broad utility in the development of advanced soft electronics.

5.
Biomed Eng Lett ; 11(3): 163-170, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34350045

RESUMEN

Neuromodulation, as a fast-growing technique in neuroscience, has been a great tool in investigation of the neural pathways and treatments for various neurological disorders. However, the limitations such as constricted penetration depth, low temporal resolution and low spatial resolution hindered the development and clinical application of this technique. Nanotechnology, which refers to the technology that deals with dimension under 100 nm, has greatly influenced the direction of scientific researches within recent years. With the recent advancements in nanotechnology, much attention is being given at applying nanomaterials to address the limitations of the current available techniques in the field of biomedical science including neuromodulation. This mini-review aims to introduce the current state-of-the-art stimuli-responsive nanomaterials used for assisting thermally induced neuromodulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...