Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Sci Food Agric ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120149

RESUMEN

BACKGROUND: Global temperature is projected to rise continuously under climate change, negatively impacting the growth and yield of winter wheat. Optimizing traditional agricultural measures is necessary to mitigate potential winter wheat yield losses caused by future climate change. This study aims to explore the variations in winter wheat growth and yield on the Loess Plateau of China under future climate change, identify the key meteorological factors affecting winter wheat growth and yield, and analyze the differences in winter wheat yield and root characteristics under different fertilization depths. RESULTS: Meteorological data from 20 General Circulation Models were applied to drive the Decision Support System for Agrotechnology Transfer model, simulating the future growth characteristics of winter wheat under various fertilization depths. The Random Forest model was used to determine the relative importance of meteorological factors influencing winter wheat yield, root length density and leaf area index. The results showed that temperature and high emission concentration were primary factors influencing crop yield under future climate change. The temperature increase projected from 2021 to 2100 would be anticipated to shorten the phenology period of winter wheat by 2-16 days and reduce grain yield by 2.9-12.7% compared to the period from 1981 to 2020. Conversely, the root length density and root weight of winter wheat would increase by 1.2-10.9% and 0.2-24.1%, respectively, in the future, and excessive allocation of root system resources was identified as a key factor contributing to the reduction in winter wheat yield. Compared with the shallow fertilization treatment (N5), the deep fertilization treatments (N15 and N25) increased the proportion of roots in the deep soil layer (30-60 cm) by 2.7-10.2%. Because of the improvement in root structure, the decline in winter wheat yield under deep fertilization treatments in the future is expected to be reduced by 1.2% to 6.5%, whereas water use efficiency increases by 1.1% to 2.4% compared to the shallow fertilization treatment. CONCLUSION: The deep fertilization treatment can enhance the root structure of winter wheat and increase the proportion of roots in the deep soil layer, thereby effectively mitigating the decline in winter wheat yield under future climate change. Overall, optimizing fertilization depth effectively addresses the reduced winter wheat yield risks and agricultural production challenges under future climate change. © 2024 Society of Chemical Industry.

2.
R Soc Open Sci ; 11(8): 240155, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39205995

RESUMEN

Trivalent ruthenium (Ru) can catalyse the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). However, the structure of Ru itself is unstable and is prone to aggregation and oxidation, leading to a decrease in catalytic activity. Therefore, it is necessary to prepare a stable, reliable, Ru-based catalyst. Based on the catalytic properties of trivalent Ru, a stable spinel structure with zinc ferrite was designed and loaded onto different carbon supports to prepare a homogeneous and stable Ru-based catalyst. The structure and physico-chemical properties were characterized through scanning electron microscopy, X-ray diffraction, transmission electron microscopy and other techniques, and the catalyst was applied to the oxidation of HMF for the preparation of FDCA. The results show that the prepared magnetic activated carbon-supported Ru-based catalyst has a concentrated particle size distribution in the range of 5-8 nm, with a loading amount of 3.61 at%. It exhibits strong soft magnetism, which is beneficial for Ru loading. Additionally, it can be reused in the oxidation of HMF to prepare FDCA over 10 cycles, with the product yield remaining essentially unchanged. The catalyst prepared in this study is characterized by recyclability and structural stability, making it promising for practical applications.

3.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39066113

RESUMEN

Hyperspectral image (HSI) classification is a vital part of the HSI application field. Since HSIs contain rich spectral information, it is a major challenge to effectively extract deep representation features. In existing methods, although edge data augmentation is used to strengthen the edge representation, a large amount of high-frequency noise is also introduced at the edges. In addition, the importance of different spectra for classification decisions has not been emphasized. Responding to the above challenges, we propose an edge-aware and spectral-spatial feature learning network (ESSN). ESSN contains an edge feature augment block and a spectral-spatial feature extraction block. Firstly, in the edge feature augment block, the edges of the image are sensed, and the edge features of different spectral bands are adaptively strengthened. Then, in the spectral-spatial feature extraction block, the weights of different spectra are adaptively adjusted, and more comprehensive depth representation features are extracted on this basis. Extensive experiments on three publicly available hyperspectral datasets have been conducted, and the experimental results indicate that the proposed method has higher accuracy and immunity to interference compared to state-of-the-art (SOTA) method.

4.
Front Genet ; 15: 1391851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021676

RESUMEN

Objective: Familial adenomatous polyposis (FAP) is a genetic syndrome characterized by multiple polyps at various evolutionary stages, which, if left untreated, inevitably progress to colorectal cancer (CRC). In this study, we present a comprehensive analysis of the evolutionary history of FAP-CRC from precancerous adenoma to carcinoma. Design: Tissues were collected from gastrointestinal endoscopy or surgical resection. Exome sequencing was performed on multiple regions of adenocarcinoma (n = 8), villous adenoma (n = 10), tubular adenoma (n = 9) and blood samples were obtained from 9 patients belonging to 7 Chinese FAP families. Phylogenetic trees were reconstructed, and evolutionary analysis was conducted to reveal the temporal sequence of events leading to CRC. Results: Inherited germline mutation sites in APC gene were identified in FAP01 (p.S1281*, COSM19212), FAP03 (p.S384Tfs*19), FAP04 (p.E1538*, COSM6041693), FAP05 (p.Q1062*, COSM3696862), and FAP07-FAP09 (p.V677Sfs*3). Notably, p.V677Sfs*3 mutation was recognized as a novel germline mutation in APC, supported by evidence of genotype-phenotype correlation in pedigree analysis. Adenomas exhibited lower mutational rates than FAP-CRC and displayed recurrent alterations in well-known chromosomal instability (CIN) genes (APC, RAS, SMAD4 and TP53) and DNA damage repair genes (SUZ12, KMT2C, BCLAF1, RUNX1, and ARID1B), suggesting the presence of genomic instability. Furthermore, a progressive increase in the HRD score (a measure of "genomic scars") was observed from tubular adenomas to villous adenomas and ultimately to carcinomas. TP53 emerged as the primary driver gene for adenoma-carcinoma transition, with driver mutations consistently appearing simultaneously rather than sequentially acquired from adenomas to carcinomas. Clonal evolution demonstrated that liver metastases can originate from the same cancer-primed cell present in a primary cancerous lesion. Conclusion: We identified a novel pathogenic variant in APC, namely, p.V677Sfs*3. The process of carcinogenesis in FAP-CRC supports the classical cancerization model, where an initial APC mutation leads to the activation of the WNT signaling pathway and CIN. Subsequently, additional mutations occur in other putative CIN genes (e.g., DNA repair, chromatin remodeling), ultimately leading to the development of microsatellite stable (MSS) tumors. Our study provides a comprehensive understanding of the genomic landscapes that underlie the transition from adenoma to carcinoma.

5.
BJOG ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808468

RESUMEN

OBJECTIVE: To evaluate the association between a short-period, high-dose in utero aspirin exposure and child neurocognitive development. DESIGN: A propensity score-matched analysis of a multicentre prospective cohort study. SETTING: The US Collaborative Perinatal Project (1959-1976). POPULATION: A total of 50 565 singleton live births with maternal information. METHODS: We performed a propensity score matching to balance maternal characteristics between women with and without aspirin exposure. Inverse probability-weighted marginal structural models were used to estimate associations between aspirin exposure and child neurocognitive assessments. MAIN OUTCOME MEASURES: Child neurocognitive development was assessed using the Bayley Scales at 8 months, the Stanford Binet Intelligence Scale at 4 years, and the Wechsler Intelligence Scale and Wide-Range Achievement Test (WRAT) at 7 years. RESULTS: Children exposed to aspirin in utero were associated with an 8%-16% reduced risk of having suspect/abnormal or below-average scores in most neurocognitive assessments. A trend of lower risks of having suspect/abnormal or below-average scores was further observed in children with in utero aspirin exposure for more than 7 days, particularly on Bayley Mental (relative risk [RR] 0.82, 95% CI 0.74-0.92), WRAT Reading (RR 0.88, 95% CI 0.78-0.98) and WRAT Arithmetic tests (RR 0.76, 95% CI 0.66-0.86). This association was mainly observed in the second trimester of pregnancy. CONCLUSIONS: In utero aspirin exposure was associated with improved child neurocognitive development in a prospective cohort study. Further studies are warranted to evaluate the impact of long-period and low-dose in utero aspirin exposure on child short- and long-term neurodevelopment.

6.
Respirol Case Rep ; 12(5): e01389, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779541

RESUMEN

Solitary respiratory papilloma is a rare epithelial tumour that can be categorized into multiple subtypes. The glandular type (Glandular papilloma, GP) is the rarest. Most GP occurs in the proximal airways and is only rarely found in the lung parenchyma. In this article, we reported a case of GP in lung parenchyma.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38820082
8.
RSC Adv ; 14(2): 1464-1471, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174242

RESUMEN

A simple fluorescence chemosensor of FHS-OH based on salicylaldehyde Schiff base was developed via a one-step reaction, which achieved a fast and highly selective response for Al(iii). Mechanism studies showed that when FHS-OH was exposed to Al(iii) with 1 : 2 binding stoichiometry in an aqueous solution at neutral pH, C[double bond, length as m-dash]N isomerization and PET processes were limited, resulting in a 'turn-on' fluorescence response with a low detection limit of 63 nmol L-1 and a satisfying linear range of 0.0-20.0 µmol L-1. Compared to traditional detection methods for Al(iii), fluorometry using FHS-OH has several advantages, including simplicity, quick response, and capability of real-time detection. More importantly, the detection of Al(iii) on a solid matrix (test paper) was successfully achieved. After the addition of Al(iii), a significant emission colour change from green to bright blue was observed by the naked eye owing to the intrinsic aggregation-induced emission (AIE) characteristic of FHS-OH.

9.
Discov Oncol ; 14(1): 228, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38070058

RESUMEN

BACKGROUND: Epithelial ovarian cancer (EOC) is a pathological type with a higher mortality rate among gynecological cancers today. Long-chain noncoding RNAs (lncRNAs) can regulate the transcription and expression of cellular genes. However, the downstream molecules regulated by lncRNA HOTAIR have not been well studied. The effects of downregulated lncRNA HOTAIR on EOC invasiveness and tumorigenicity in nude mice, along with TGF- ß1 and ZEB1 in epithelial ovarian cancer cells, need to be investigated in further research. RESULTS: RT-qPCR was used to detect lncRNA HOTAIR and TGF-ß1 and ZEB1 mRNA expression in EOC SKOV3 cells. The expression of lncRNA HOTAIR in SKOV3 cells transfected with the recombinant shHOTAIR interference plasmid was significantly lower than that of the negative control. Compared with the negative control, the matrix gel invasion ability of shHOTAIR SKOV3 cells in vitro and their tumorigenicity in nude mice were significantly reduced. Moreover, compared with the control, the expression of ZEB1 protein in shHOTAIR-SKOV3 xenograft tumors was significantly reduced. Downregulation of lncRNA HOTAIR expression significantly reduced TGF-ß1 and ZEB1 mRNA expression, but increased the expression of E-cadherin mRNA. In summary, downregulated lncRNA HOTAIR in EOC SKOV3 cells transfected with shHOTAIR can inhibit TGF-ß1, reduce ZEB1, increase E-cadherin, and significantly reduce the invasiveness and tumorigenicity of ovarian epithelial cancer SKOV3 cells. CONCLUSIONS: These results suggest that the lncRNA HOTAIR may be an effective target for the treatment of human EOC.

10.
Respirol Case Rep ; 11(12): e01242, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37915371

RESUMEN

Disseminated VZV infections is rare in healthy adults. Several studies have reported VZV reactivation and eruption happens in an immunocompromised host especially after solid organ transplantation. Nonetheless, diffuse bilateral lung VZV infections is also rare. We report a case of disseminated VZV pneumonia after renal transplantation and methylprednisolone treatment. This report highlights the computed tomography manifestations of disseminated VZV pneumonia.

11.
Respirol Case Rep ; 11(11): e01233, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37822865

RESUMEN

Tuberculous pleurisy is a main cause of pleural effusions. The main histological abnormalities in pleural biopsy of tuberculous pleurisy are caseating granulomas and epithelioid cell granuloma. In our case, chronic inflammation of fibrous tissue with bleeding, necrosis, and exudation were observed during a medical thoracoscopy as manifestations of tuberculous pleurisy.

12.
Cell ; 186(21): 4615-4631.e16, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769658

RESUMEN

SARS-CoV-2 primary strain-based vaccination exerts a protective effect against Omicron variants-initiated infection, symptom occurrence, and disease severity in a booster-dependent manner. Yet, the underlying mechanisms remain unclear. During the 2022 Omicron outbreak in Shanghai, we enrolled 122 infected adults and 50 uninfected controls who had been unvaccinated or vaccinated with two or three doses of COVID-19 inactive vaccines and performed integrative analysis of 41-plex CyTOF, RNA-seq, and Olink on their peripheral blood samples. The frequencies of HLA-DRhi classical monocytes, non-classical monocytes, and Th1-like Tem tended to increase, whereas the frequency of Treg was reduced by booster vaccine, and they influenced symptom occurrence in a vaccine dose-dependent manner. Intercorrelation and mechanistic analysis suggested that the booster vaccination induced monocytic training, which would prime monocytic activation and maturation rather than differentiating into myeloid-derived suppressive cells upon Omicron infections. Overall, our study provides insights into how booster vaccination elaborates protective immunity across SARS-CoV-2 variants.

13.
Bioeng Transl Med ; 8(5): e10555, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693057

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by chronic, progressive, and fibrotic lung injury. Although remarkable progress has been made toward understanding the pathogenesis of PF, finding more effective treatments for this fatal disease remains a challenge. In this study, we describe an innovative macrophage-based approach to deliver anti-fibrotic protein to the lung and inhibit PF in a mouse model of bleomycin (BLM)-induced lung injury. We engineered macrophages to continuously secrete three types of proteins: interleukin-10, which prevents inflammation; TGFRcFc, a soluble truncated TGF-ßR2 that blocks TGF-ß; and CD147, which induces matrix metalloproteinases (MMPs) and causes collagen degradation. Infusing these engineered macrophages into the lungs of BLM-induced PF mouse models in an optimal pattern significantly ameliorated PF in mice. Specifically, the most effective therapeutic outcome was achieved by infusing IL-10-secreting macrophages on day 1, followed by TGFRcFc-secreting macrophages on day 7 and CD147-secreting macrophages on day 14 into the same mice after BLM treatment. Our data suggest that macrophage-based delivery of anti-fibrotic proteins to the lungs is a promising therapy for fibrotic lung disorders.

14.
Front Bioeng Biotechnol ; 11: 1194511, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324439

RESUMEN

Background: L-lysine is widely used in the feed, food, and pharmaceutical industries, and screening for high L-lysine-producing strains has become a key goal for the industry. Methods: We constructed the rare L-lysine codon AAA by corresponding tRNA promoter replacement in C. glutamicum. Additionally, a screening marker related to the intracellular L-lysine content was constructed by converting all L-lysine codons of enhanced green fluorescent protein (EGFP) into the artificial rare codon AAA. The artificial EGFP was then ligated into pEC-XK99E and transformed into competent Corynebacterium glutamicum 23604 cells with the rare L-lysine codon. After atmospheric and room-temperature plasma mutation and induction culture, 55 mutants (0.01% of total cells) with stronger fluorescence were sorted using flow cytometry, and further screened by fermentation in a 96-deep-well plate and 500 mL shaker. Results: The fermentation results showed that the L-lysine production was increased by up to 9.7% in the mutant strains with higher fluorescence intensities, and that the highest screening positive rate was 69%, compared with that in the wild-type strain. Conclusion: The application of artificially constructed rare codons in this study represents an efficient, accurate, and simple method for screening other amino acid-producing microorganisms.

15.
Front Bioeng Biotechnol ; 11: 1202483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334270

RESUMEN

Introduction: ß-Alanine is the only ß-amino acid in nature; it is widely used in food additives, medicines, health products, and surfactants. To avoid pollution caused by traditional production methods, the synthesis of ß-alanine has been gradually replaced by microbial fermentation and enzyme catalysis, which is a green, mild, and high-yield biosynthesis method. Methods: In this study, we constructed an Escherichia coli recombinant strain for efficient ß-alanine production using glucose as the raw material. The microbial synthesis pathway of L-lysine-producing strain, Escherichia coli CGMCC 1.366, was modified using gene editing by knocking out the aspartate kinase gene, lysC. The catalytic efficiency and product synthesis efficiency were improved by assembling key enzymes with cellulosome. Results: By-product accumulation was reduced by blocking the L-lysine production pathway, thereby increasing the yield of ß-alanine. In addition, catalytic efficiency was improved by the two-enzyme method to further increase the ß-alanine content. The key cellulosome elements, dockerin (docA) and cohesin (cohA), were combined with L-aspartate-α-decarboxylase (bspanD) from Bacillus subtilis and aspartate aminotransferase (aspC) from E.coli to improve the catalytic efficiency and expression level of the enzyme. ß-alanine production reached 7.439 mg/L and 25.87 mg/L in the two engineered strains. The ß-alanine content reached 755.465 mg/L in a 5 L fermenter. Discussion: The content of ß-alanine synthesized by constructed ß-alanine engineering strains were 10.47 times and 36.42 times higher than the engineered strain without assembled cellulosomes, respectively. This research lays the foundation for the enzymatic production of ß-alanine using a cellulosome multi-enzyme self-assembly system.

16.
Int J Biol Sci ; 19(6): 1681-1697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063420

RESUMEN

Gliomas are the most aggressive type of malignant brain tumors. Recent studies have demonstrated that the existence of glioma stem cells (GSCs) is critical for glioma recurrence, metastasis, and chemo- or radio-therapy resistance. Temozolomide (TMZ) has been used as an initial therapy for gliomas. However, the overall survival time is still limiting due to the lack of effective targets and treatment options. Therefore, identifying novel biomarkers for gliomas, especially for GSCs, is important to improve the clinical outcome in the future. In this study, we identify a human-specific long non-coding RNA (lncRNA, ENSG00000250377), termed GSCAR (glioma stem cell associated lncRNA), which is highly expressed in glioma cancerous tissues and cell lines. We reveal that GSCAR positively correlates with tumor grade. Glioma patients with GSCAR high expression exhibit shortened overall survival time, compared to patients with GSCAR low expression. Furthermore, we show that GSCAR knockdown by shRNAs or antisense oligonucleotide (ASO) reduces tumor cell proliferation, migration and xenograft tumor formation abilities. Mechanistic study shows that GSCAR acts as a ceRNA (competing endogenous RNA) for miR-6760-5p to promote the expression of oncogene SRSF1 (serine and arginine rich splicing factor 1). In addition, GSCAR mediates the protein complex formation between DHX9 (DExH-Box helicase 9) and IGF2BP2 (insulin-like growth factor 2 mRNA-binding protein 2), leading to the stabilization of SOX2 (sex-determining region Y-box 2) mRNA and then the transcriptional activation of GSCAR. Depleting GSCAR reduces SOX2 expression and GSC self-renewal ability, but promotes tumor cell responses to TMZ. These findings uncover that GSCAR/miR-6760-5p/SRSF1 axis and GSCAR/DHX9-IGF2BP2/SOX2 positive feedback loop are critical for glioma progression, which could be used as prognostic biomarkers and therapeutic targets in the future.


Asunto(s)
Glioma , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/metabolismo , Glioma/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proliferación Celular/genética , Células Madre Neoplásicas/metabolismo , ARN Mensajero/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Empalme Serina-Arginina/genética
17.
J Inorg Biochem ; 243: 112200, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36989945

RESUMEN

A cholic acid-conjugated oxaliplatin, LLC-202, is developed as a novel prodrug for liver cancer. The conjugate is obtained by using 3-NH2-cyclobutane-1,1-dicarboxylate as a linker between the oxaliplatin analogue and cholic acid moiety and cholic acid is strongly bonded to the linker via an amide bond. Pharmacokinetic experiment shows that LLC-202 is mainly distributed and accumulated in the liver after intravenous administration to Sprague-Dawley rats, revealing the liver-targeting profile. Compared to oxaliplatin, LLC-202 is more easily taken up by human liver cancer cells than normal human liver cells. LLC-202 exhibits higher in vitro anticancer activity and higher efficacy comparable to oxaliplatin in treating primary hepatocellular carcinoma in C57BL/6 mice. It can significantly prolong the survival time of tumor-bearing mice by inducing apoptosis and inhibiting proliferation of cancer cells. In addition, LLC-202 shows less cytotoxicity toward normal human liver cells than oxaliplatin. Its acute toxicity in healthy Kunming (KM) mice after i.v. administration is comparable to oxaliplatin. Histopathological examination reveals that the main toxicity of LLC-202 in mice is the depression of bone marrow hematopoietic cells. The results suggest that LLC-202 has great potential for further development as a new prodrug specific for liver cancer.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Profármacos , Ratones , Ratas , Humanos , Animales , Oxaliplatino/farmacología , Profármacos/farmacología , Ácido Cólico/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos/química
18.
Front Bioeng Biotechnol ; 10: 1044291, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406235

RESUMEN

Xylanase, a glycoside hydrolase, is widely used in the food, papermaking, and textile industries; however, most xylanases are inactive at high temperatures. In this study, a xylanase gene, CFXyl3, was cloned from Cellulomonas flavigena and expressed in Escherichia coli BL21 (DE3). To improve the thermostability of xylanase, four hybrid xylanases with enhanced thermostability (designated EcsXyl1-4) were engineered from CFXyl3, guided by primary and 3D structure analyses. The optimal temperature of CFXyl3 was improved by replacing its N-terminus with the corresponding area of SyXyn11P, a xylanase that belongs to the hyperthermostable GH11 family. The optimal temperatures of the hybrid xylanases EcsXyl1-4 were 60, 60, 65, and 85°C, respectively. The optimal temperature of EcsXyl4 was 30 C higher than that of CFXyl3 (55°C) and its melting temperature was 34.5°C higher than that of CFXyl3. After the hydrolysis of beechwood xylan, the main hydrolysates were xylotetraose, xylotriose, and xylobiose; thus, these hybrid xylanases could be applied to prebiotic xylooligosaccharide manufacturing.

19.
Schizophr Bull ; 48(4): 804-813, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35522199

RESUMEN

OBJECTIVES: Despite of strenuous research in the past decades, the etiology of schizophrenia (SCZ) still remains incredibly controversial. Previous genetic analysis has uncovered a close association of Unc-51 like kinase 4 (ULK4), a family member of Unc-51-like serine/threonine kinase, with SCZ. However, animal behavior data which may connect Ulk4 deficiency with psychiatric disorders, particularly SCZ are still missing. METHODS: We generated Emx1-Cre:Ulk4flox/flox conditional knockout (CKO) mice, in which Ulk4 was deleted in the excitatory neurons of cerebral cortex and hippocampus. RESULTS: The cerebral cellular architecture was maintained but the spine density of pyramidal neurons was reduced in Ulk4 CKO mice. CKO mice showed deficits in the spatial and working memories and sensorimotor gating. Levels of p-Akt and p-GSK-3α/ß were markedly reduced in the CKO mice indicating an elevation of GSK-3 signaling. Mechanistically, Ulk4 may regulate the GSK-3 signaling via putative protein complex comprising of two phosphatases, protein phosphatase 2A (PP2A) and 1α (PP1α). Indeed, the reduction of p-Akt and p-GSK-3α/ß was rescued by administration of inhibitor acting on PP2A and PP1α in CKO mice. CONCLUSIONS: Our data identified potential downstream signaling pathway of Ulk4, which plays important roles in the cognitive functions and when defective, may promote SCZ-like pathogenesis and behavioral phenotypes in mice.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Esquizofrenia , Animales , Cognición , Eliminación de Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Esquizofrenia/genética , Esquizofrenia/patología , Transducción de Señal
20.
Signal Transduct Target Ther ; 7(1): 147, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35504869

RESUMEN

The incidence of cutaneous melanoma (CM) has been increasing annually worldwide. In this study, we identify that MrgprF, a MAS related GPR family member, is decreased in cutaneous melanoma tissues and cell lines due to hypermethylation of its promoter region, and show that patients with CM expressing high levels of MrgprF exhibit an improved clinical outcome. We demonstrate that MrgprF forced expression inhibits tumor cell proliferation, migration, xenograft tumor growth, and metastasis. On the contrary, MrgprF knockdown promotes tumor cell proliferation and transformation of immortalized human keratinocyte-HaCaT cells, supporting the inhibitory role of MrgprF during tumor progression. Mechanistic studies reveal that MrgprF reduces the phosphoinositol­3­kinase (PI3K) complex formation between p101 and p110γ subunits, the critical step for phosphatidylinositol-(3, 4)-P2 (PIP2) conversion to phosphatidylinositol-(3, 4, 5)-P3 (PIP3), and then reduces the activation of PI3K/Akt signaling. This effect can be reversed by Akt specific agonist SC79. In addition, AMG 706, a previously documented inhibitor for endothelial cell proliferation, is identified as a potential agonist for MrgprF, and can impede tumor growth both in vitro and in vivo. Taken together, our findings suggest that MrgprF, a novel tumor suppressor in cutaneous melanoma, may be useful as a therapeutic target in the future.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas/genética , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...