Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 40(7): 1123-1131, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35241837

RESUMEN

Design of nucleic acid-based viral diagnostics typically follows heuristic rules and, to contend with viral variation, focuses on a genome's conserved regions. A design process could, instead, directly optimize diagnostic effectiveness using a learned model of sensitivity for targets and their variants. Toward that goal, we screen 19,209 diagnostic-target pairs, concentrated on CRISPR-based diagnostics, and train a deep neural network to accurately predict diagnostic readout. We join this model with combinatorial optimization to maximize sensitivity over the full spectrum of a virus's genomic variation. We introduce Activity-informed Design with All-inclusive Patrolling of Targets (ADAPT), a system for automated design, and use it to design diagnostics for 1,933 vertebrate-infecting viral species within 2 hours for most species and within 24 hours for all but three. We experimentally show that ADAPT's designs are sensitive and specific to the lineage level and permit lower limits of detection, across a virus's variation, than the outputs of standard design techniques. Our strategy could facilitate a proactive resource of assays for detecting pathogens.


Asunto(s)
Aprendizaje Automático , Ácidos Nucleicos , Redes Neurales de la Computación
2.
Cell ; 184(20): 5247-5260.e19, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34534445

RESUMEN

3' untranslated region (3'UTR) variants are strongly associated with human traits and diseases, yet few have been causally identified. We developed the massively parallel reporter assay for 3'UTRs (MPRAu) to sensitively assay 12,173 3'UTR variants. We applied MPRAu to six human cell lines, focusing on genetic variants associated with genome-wide association studies (GWAS) and human evolutionary adaptation. MPRAu expands our understanding of 3'UTR function, suggesting that simple sequences predominately explain 3'UTR regulatory activity. We adapt MPRAu to uncover diverse molecular mechanisms at base pair resolution, including an adenylate-uridylate (AU)-rich element of LEPR linked to potential metabolic evolutionary adaptations in East Asians. We nominate hundreds of 3'UTR causal variants with genetically fine-mapped phenotype associations. Using endogenous allelic replacements, we characterize one variant that disrupts a miRNA site regulating the viral defense gene TRIM14 and one that alters PILRB abundance, nominating a causal variant underlying transcriptional changes in age-related macular degeneration.


Asunto(s)
Regiones no Traducidas 3'/genética , Evolución Biológica , Enfermedad/genética , Estudio de Asociación del Genoma Completo , Algoritmos , Alelos , Regulación de la Expresión Génica , Genes Reporteros , Variación Genética , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Polirribosomas/metabolismo , Sitios de Carácter Cuantitativo/genética , ARN/genética
3.
Nature ; 582(7811): 277-282, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32349121

RESUMEN

The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas Analíticas Microfluídicas/métodos , Virosis/diagnóstico , Virosis/virología , Animales , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Farmacorresistencia Viral/genética , Genoma Viral/genética , VIH/clasificación , VIH/genética , VIH/aislamiento & purificación , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Técnicas Analíticas Microfluídicas/instrumentación , ARN Guía de Kinetoplastida/genética , SARS-CoV-2 , Sensibilidad y Especificidad
4.
Nat Biotechnol ; 37(2): 160-168, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30718881

RESUMEN

Metagenomic sequencing has the potential to transform microbial detection and characterization, but new tools are needed to improve its sensitivity. Here we present CATCH, a computational method to enhance nucleic acid capture for enrichment of diverse microbial taxa. CATCH designs optimal probe sets, with a specified number of oligonucleotides, that achieve full coverage of, and scale well with, known sequence diversity. We focus on applying CATCH to capture viral genomes in complex metagenomic samples. We design, synthesize, and validate multiple probe sets, including one that targets the whole genomes of the 356 viral species known to infect humans. Capture with these probe sets enriches unique viral content on average 18-fold, allowing us to assemble genomes that could not be recovered without enrichment, and accurately preserves within-sample diversity. We also use these probe sets to recover genomes from the 2018 Lassa fever outbreak in Nigeria and to improve detection of uncharacterized viral infections in human and mosquito samples. The results demonstrate that CATCH enables more sensitive and cost-effective metagenomic sequencing.


Asunto(s)
Biología Computacional/métodos , Genoma Viral , Metagenoma , Metagenómica , Animales , Culicidae/virología , Brotes de Enfermedades , Biblioteca de Genes , Variación Genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fiebre de Lassa/virología , Nigeria/epidemiología , Sondas de Oligonucleótidos , Oligonucleótidos/genética , Análisis de Secuencia de ADN , Virosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA