Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.540
Filtrar
1.
Intest Res ; 22(2): 186-207, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38720467

RESUMEN

BACKGROUND/AIMS: We investigated the clinical practice patterns of post-polypectomy colonoscopic surveillance among Korean endoscopists. METHODS: In a web-based survey conducted between September and November 2021, participants were asked about their preferred surveillance intervals and the patient age at which surveillance was discontinued. Adherence to the recent guidelines of the U.S. Multi-Society Task Force on Colorectal Cancer (USMSTF) was also analyzed. RESULTS: In total, 196 endoscopists completed the survey. The most preferred first surveillance intervals were: a 5-year interval after the removal of 1-2 tubular adenomas < 10 mm; a 3-year interval after the removal of 3-10 tubular adenomas < 10 mm, adenomas ≥ 10 mm, tubulovillous or villous adenomas, ≤ 20 hyperplastic polyps < 10 mm, 1-4 sessile serrated lesions (SSLs) < 10 mm, hyperplastic polyps or SSLs ≥ 10 mm, and traditional serrated adenomas; and a 1-year interval after the removal of adenomas with highgrade dysplasia, >10 adenomas, 5-10 SSLs, and SSLs with dysplasia. In piecemeal resections of large polyps ( > 20 mm), surveillance colonoscopy was mostly preferred after 1 year for adenomas and 6 months for SSLs. The mean USMSTF guideline adherence rate was 30.7%. The largest proportion of respondents (40.8%-55.1%) discontinued the surveillance at the patient age of 80-84 years. CONCLUSIONS: A significant discrepancy was observed between the preferred post-polypectomy surveillance intervals and recent international guidelines. Individualized measures are required to increase adherence to the guidelines.

2.
J Hazard Mater ; 472: 134495, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38714053

RESUMEN

Nanopore sequencing is extremely promising for the high-throughput detection of pathogenic bacteria in natural water; these bacteria may be transmitted to humans and cause waterborne infectious diseases. However, the concentration of pathogenic bacteria in natural water is too low to be detected directly by nanopore sequencing. Herein, we developed a mica filter to enrich over 85% of bacteria from > 10 L of natural water in 100 min, which led to a 102-fold improvement in the assay limits of the MinION sequencer for assessing pathogenic bacteria. Correspondingly, the sequencing time of S. Typhi detection at a concentration as low as 105 CFU/L was reduced from traditional 48 h to 3 h. The bacterial adsorption followed pseudo-first-order kinetics and the successful adsorption of bacteria to the mica filter was confirmed by scanning electron microscopy and Fourier infrared spectroscopy et al. The mica filter remained applicable to a range of water samples whose quality parameters were within the EPA standard limits for freshwater water. The mica filter is thus an effective tool for the sensitive and rapid monitoring of pathogenic bacteria by nanopore sequencing, which can provide timely alerts for waterborne transmission events.

3.
Chemosphere ; : 142295, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729445

RESUMEN

In this study, high-ash coal slime-based mineral soil amendment (MSA) was prepared via the hydrothermal method using high-ash coal slime as raw material, supplemented with activator calcium oxide and additive KOH solution. After hydrothermal treatment at 230 °C for 5 h, the original crystalline phase (quartz and kaolinite) of the high-ash slime was completely transformed into hydrotalcite zeolite, tobermorite, and silicate of potassium aluminosilicate, which has the largest specific surface area. The adsorption of Pb2+ and Cd2+ was adherent to the kinetic equation of secondary adsorption and Freundlich models, and the removal of Pb2+ and Cd2+ reached up to 362.58 mg g-1 and 64.67 mg g-1. The successive releases of SiO2 and CaO from MSA conformed to the Elovich equation, whereas the releases of SiO2 in Cd-containing environments and CaO in Pb- and Cd-containing environments more closely conformed to the power function; the releases of K2O all conformed to the first-order kinetic equation. The presence of Pb2+ and Cd2+ in the environment promotes the release of potassium and calcium elements with MSA's ion-exchange ability, and attenuates the release of silicon elements. Combining Pb2+ and Cd2+ with silicon resulted in the intolerant precipitation of 3PbO·2SiO2 and Cd2SiO4. The mineral precipitation mechanism is the most important mechanism of MSA in immobilizing heavy metals, accounting for 72.7% to 80.5% of the total adsorption. Further contaminated soil immobilization experiments also showed that the application of MSA significantly reduced the bioavailability of soil heavy metals. When the MSA addition amount was 1.6%, the residual state increased by 63.58%. In conclusion, preparing MSA may effectively utilize coal-based solid waste with high added value.

4.
J Hazard Mater ; 472: 134487, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704906

RESUMEN

Atmospheric pressure dielectric barrier discharge (DBD) plasma is an emerging and promising technique for air disinfection in public environments. Power supply is a crucial factor but it remains unclear about its impacts on the air disinfection performance of plasmas. In this work, a nanosecond (ns) pulsed power supply was applied to drive an in-duct grating-like DBD array to achieve fast single-pass air disinfection. The influence of pulse parameters and environmental factors on both the discharge characteristics and the single-pass bacterial inactivation efficiency were uncovered. At a close relative humidity (RH) level, the efficiency was dominated by the discharge power, namely, specific input energy could serve as the disinfection dose. A higher frequency, shorter pulse rising time, and suitable pulse width are preferred to obtain a higher Z value. The pulsed source was not notably superior to an alternating current source, or even worse at a low voltage frequency at the same discharge power. Airflow humidity was a predominant factor to improve the efficiency and a single-pass efficiency of ∼ 99% and a Z value of 2.2 L/J were achieved under an optimal RH of 50%-60%. This work provides fundamental knowledge of ns-pulsed DBD on discharge characteristics and air disinfection behaviors.

5.
Front Cell Dev Biol ; 12: 1405546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745862

RESUMEN

Silent information regulator two homolog 1 (SIRT1), an NAD + -dependent histone deacetylase, plays a pivotal regulatory role in a myriad of physiological processes. A growing body of evidence suggests that SIRT1 can exert protective effects in metabolic disorders and neurodegenerative diseases by inhibiting endoplasmic reticulum (ER) stress and the nuclear factor-κB (NF-κB) inflammatory signaling pathway. This review systematically elucidates the molecular mechanisms and biological significance of SIRT1 in regulating ER stress and the NF-κB pathway. On one hand, SIRT1 can deacetylate key molecules in the ER stress pathway, such as glucose-regulated protein 78 (GRP78), X-box binding protein 1 (XBP1), PKR-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6), thereby alleviating ER stress. On the other hand, SIRT1 can directly or indirectly remove the acetylation modification of the NF-κB p65 subunit, inhibiting its transcriptional activity and thus attenuating inflammatory responses. Through these mechanisms, SIRT1 can ameliorate insulin resistance in metabolic diseases, exert cardioprotective effects in ischemia-reperfusion injury, and reduce neuronal damage in neurodegenerative diseases. However, it is important to note that while these findings are promising, the complex nature of the biological systems involved warrants further investigation to fully unravel the intricacies of SIRT1's regulatory mechanisms. Nevertheless, understanding the regulatory mechanisms of SIRT1 on ER stress and the NF-κB pathway is of great significance for expanding our knowledge of the pathogenesis of related diseases and exploring new preventive and therapeutic strategies targeting SIRT1.

6.
Org Lett ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743916

RESUMEN

An unconventional [1 + 1 + 1 + 1 + 1 + 1] annulation process was developed for the construction of ß,ß-dithioketones by merging C-C and C-S bond cleavage. In this reaction, rongalite concurrently served as triple C1 units, dual sulfur(II) synthons, and a reductant for the first time. Mechanism investigation indicated that the reaction involved the self-mediated valence state change of rongalite. By performing this step-economical method, the challenging construction of C5-substituted 1,3-dithiane can be achieved under mild and simple conditions.

7.
Radiology ; 311(2): e230750, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713024

RESUMEN

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion-guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61-71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0-3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Estudios Prospectivos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Persona de Mediana Edad , Algoritmos , Próstata/diagnóstico por imagen , Próstata/patología , Biopsia Guiada por Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38719137

RESUMEN

OBJECTIVE: Residual aortic dissection (AD) following DeBakey type I AD repair is associated with a high rate of adverse events that need additional intervention or surgery. This study aimed to identify clinical and early post-operative computed tomography (CT) imaging factors associated with adverse events in patients with type I AD after ascending aorta replacement. METHODS: This single centre, retrospective cohort study included consecutive patients with type I AD who underwent ascending aorta replacement from January 2011 to December 2017 and post-operative CT within 3 months. The primary outcome was AD related adverse events, defined as AD related death and re-operation due to aortic aneurysm or impending rupture. The location and size of the primary intimal tears, aortic diameter, and false lumen status were evaluated. Regression analyses were performed to identify factors associated with AD related adverse events. A decision tree model was used to classify patients as high or low risk. RESULTS: Of 103 participants (55.43 ± 13.94 years; 49.5% males), 24 (23.3%) experienced AD related adverse events. In multivariable Cox regression analysis, connective tissue disease (hazard ratio [HR] 15.33; p < .001), maximum aortic diameter ≥ 40 mm (HR 4.90; p < .001), and multiple (three or more) intimal tears (HR 7.12; p < .001) were associated with AD related adverse events. The 3 year cumulative survival free from AD related events was lower in the high risk group with aortic diameter ≥ 40 mm and multiple intimal tears (41.7% vs. 90.9%; p < .001). CONCLUSION: Early post-operative CT findings indicating a maximum aortic diameter ≥ 40 mm and multiple intimal tears may predict a higher risk of adverse events. These findings suggest the need for careful monitoring and more vigilant management approaches in these cases.

9.
Angew Chem Int Ed Engl ; : e202405878, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713005

RESUMEN

Lattice mismatch significantly influences microscopic transport in semiconducting devices, affecting interfacial charge behavior and device efficacy. This atomic-level disordering, often overlooked in previous research, is crucial for device efficiency and lifetime. Recent studies have highlighted emerging challenges related to lattice mismatch in perovskite solar cells, especially at heterojunctions, revealing issues like severe tensile stress, increased ion migration, and reduced carrier mobility. This review systematically discusses the effects of lattice mismatch on strain, material stability, and carrier dynamics. It also includes detailed characterizations of these phenomena and summarizes the current strategies including epitaxial growth and buffer layer, as well as explores future solutions to mitigate mismatch-induced issues. We also provide the challenges and prospects for lattice mismatch, aiming to enhance the efficiency and stability of perovskite solar cells, and contribute to renewable energy technology advancements.

10.
Heliyon ; 10(9): e30260, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720708

RESUMEN

Background: Gallbladder carcinoma (GBC) is a formidably aggressive malignancy. Circular RNAs (circRNAs) play crucial regulatory roles in cancer. NGFR is a novel circRNA implicated in various types of cancers. The primary goal of this study was to elucidate the role of NGFR in GBC. Methods: NGFR variants exhibiting discernible discrepancies were identified using RNA sequencing and validated using real-time PCR. Cell proliferation was assessed using 5-ethynyl-2'-deoxyuridine and Cell Counting Kit-8 assays. The ferroptotic phenotype was characterized by assessing the reactive oxygen species and Fe2+ levels. Western blotting was used to analyze ferroptosis-associated proteins. Superoxide dismutase, malondialdehyde, and glutathione levels were measured using commercially available reagent kits. The severity of mitochondrial damage was evaluated by assessing JC-1, MitoSOX, and ATP activities. Results: NGFR was upregulated, and its suppression inhibited cell proliferation and increased Fe2+ levels in GBC cells. Furthermore, NGFR downregulation disrupted mitochondrial function. Conclusion: Circular RNA NGFR can impede the advancement of GBC by modulating the ferroptotic phenotype, thereby potentially offering a novel avenue for the clinical diagnosis and treatment strategies of GBC.

11.
Int J Ophthalmol ; 17(3): 485-490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721517

RESUMEN

AIM: To investigate the long-term changes of corneal densitometry (CD) and its contributing elements after small incision lenticule extraction (SMILE). METHODS: Totally 31 eyes of 31 patients with mean spherical equivalent of -6.46±1.50 D and mean age 28.23±7.38y were enrolled. Full-scale examinations were conducted on all patients preoperatively and during follow-up. Visual acuity, manifest refraction, axial length, corneal thickness, corneal higher-order aberrations, and CD were evaluated. RESULTS: All surgeries were completed successfully without complications or adverse events. Ten-year safety index was 1.17±0.20 and efficacy 1.04±0.28. CD value of 0-6 mm zones in central layer was statistically significantly lower 10y postoperatively, compared with preoperative values (0-2 mmΔ=-1.62, 2-6 mmΔ=-1.24, P<0.01). There were no correlations between CD values and factors evaluated. CONCLUSION: SMILE is a safe and efficient procedure for myopia on a long-term basis. CD values get lower 10y postoperatively, whose mechanism is to be further discussed.

12.
Inflammation ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722504

RESUMEN

Ferroptosis is a newly proposed form of programmed cell death that is iron-dependent and closely linked to oxidative stress. Its specific morphological changes include shrunken mitochondria, increased density of mitochondrial membrane, and rupture or disappearance of mitochondrial cristae. The main mechanism of ferroptosis involves excessive free iron reacting with membrane phospholipids, known as the Fenton reaction, resulting in lipid peroxidation. However, the role of iron in acute lung injury (ALI) remains largely unknown. In this study, LPS was instilled into the airway to induce ALI in mice. We observed a significant increase in iron concentration during ALI, accompanied by elevated levels of lipid peroxidation markers such as malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE). Treatment with the iron chelator deferoxamine (DFO) or ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed lipid peroxidation and significantly attenuates lung injury. Similarly, DFO or Fer-1 treatment improved the cell survival significantly in vitro. These results demonstrated that ferroptosis occurs during ALI and that targeting ferroptosis is an effective treatment strategy. Interestingly, we found that the increased iron was primarily concentrated in mitochondria and DFO treatment effectively restored normal mitochondria morphology. To further confirm the damaging effect of iron on mitochondria, we performed mitochondrial stress tests in vitro, which revealed that iron stimulation led to mitochondrial dysfunction, characterized by impaired basal respiratory capacity, ATP production capacity, and maximum respiratory capacity. MitoTEMPO, an antioxidant targeting mitochondria, exhibited superior efficacy in improving iron-induced mitochondrial dysfunction compared to the broad-spectrum antioxidant NAC. Treatment with MitoTEMPO more effectively alleviated ALI. In conclusion, ferroptosis contributes to the pathogenesis of ALI and aggravates ALI by impairing mitochondrial function.

14.
Sci Rep ; 14(1): 10089, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698209

RESUMEN

Aging is a recognized risk factor for periodontitis, while biological aging could provide more accurate insights into an individual's functional status. This study aimed to investigate the potential association between biological aging and periodontitis. Epidemiological data from 9803 participants in the 2009-2014 National Health and Nutrition Examination Survey were analyzed at a cross-sectional level to assess this link. Three biological ages [Klemera-Doubal method (KDM), PhenoAge, and homeostatic dysregulation (HD)] and two measures of accelerated biological aging (BioAgeAccel and PhenoAgeAccel) were set as primary exposure and were calculated. Logistic regression and restricted cubic spline regression were employed to examine the relationship between biological aging and periodontitis. Additionally, Mendelian randomization analysis was conducted to explore the causal connection between accelerated biological aging and periodontitis. After adjusting for age, gender, race, educational level, marital status, ratio of family income, and disease conditions, this study, found a significant association between subjects with older higher biological ages, accelerated biological aging, and periodontitis. Specifically, for a per year increase in the three biological ages (HD, KDM, and PhenoAge), the risk of periodontitis increases by 15%, 3%, and 4% respectively. Individuals who had positive BioAgeAccel or PhenoAgeAccel were 20% or 37% more likely to develop periodontitis compared with those who had negative BioAgeAccel or PhenoAgeAccel. Furthermore, a significant non-linear positive relationship was observed between the three biological ages, accelerated biological aging, and periodontitis. However, the Mendelian randomization analysis indicated no causal effect of accelerated biological aging on periodontitis. Our findings suggest that biological aging may contribute to the risk of periodontitis, highlighting the potential utility of preventive strategies targeting aging-related pathways in reducing periodontitis risk among older adults.


Asunto(s)
Envejecimiento , Análisis de la Aleatorización Mendeliana , Encuestas Nutricionales , Periodontitis , Humanos , Periodontitis/genética , Periodontitis/epidemiología , Masculino , Femenino , Envejecimiento/genética , Persona de Mediana Edad , Anciano , Adulto , Estudios Transversales , Factores de Riesgo
15.
J Am Chem Soc ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717289

RESUMEN

The linear assembly of nanocrystals (NCs) with orientational order presents a significant challenge in the field of colloidal assembly. This study presents an efficient strategy for assembling oleic acid (OAH)-capped, faceted rare earth NCs─such as nanorods, nanoplates, and nanodumbbells─into flexible chain-like superstructures. Remarkably, these NC chains exhibit a high degree of particle orientation even with an interparticle distance reaching up to 15 nm. Central to this oriented assembly method is the facet-selective adsorption of low-molecular-weight polyethylene glycol (PEG), such as PEG-400 (Mn = 400), onto specific facets of NCs. This regioselectivity is achieved by exploiting the lower binding affinity of OAH ligands on the (100) facets of rare earth NCs, enabling facet-specific ligand displacement and subsequent PEG attachment. By adjusting the solvent polarity, the linear assembly of NCs is induced by the solvophobic effect, which simultaneously promotes the formation of hydrogen-bonded PEG supramolecular bridges. These supramolecular bridges effectively connect NCs and exhibit sufficient robustness to maintain the structural integrity of the chains, despite the large interparticle spacing. Notably, even when coassembling different types of NCs, the resulting multicomponent chains still feature highly selective facet-to-facet connections. This work not only introduces a versatile method for fabricating well-aligned linear superstructures but also provides valuable insights into the fundamental principles governing the facet-selective assembly of NCs in solution.

16.
Front Nutr ; 11: 1388645, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699547

RESUMEN

Objective: This study aimed to establish an accurate and efficient scientific calculation model for the nutritional composition of catering food to estimate energy and nutrient content of catering food. Methods: We constructed a scientific raw material classification database based on the Chinese food composition table by calculating the representative values of each food raw material type. Using China's common cooking methods, we cooked 150 dishes including grains, meat, poultry, fish, eggs, and vegetables and established a database showing the raw and cooked ratios of various food materials by calculating the ratio of raw to cooked and the China Total Diet Research database. The effects of various cooking methods on the nutritional composition of catering food were analyzed to determine correction factors for such methods on the nutritional components. Finally, we linked the raw material classification, raw and cooked ratio, and nutritional component correction factor databases to establish a model for calculating the nutritional components of catering food. The model was verified with nine representative Chinese dishes. Results: We have completed the construction of an accurate and efficient scientific calculation model for the nutritional composition of catering food, which improves the accuracy of nutrition composition calculation. Conclusion: The model constructed in this study was scientific, accurate, and efficient, thereby promising in facilitating the accurate calculation and correct labeling of nutritional components in catering food.

17.
Mol Plant ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704640

RESUMEN

Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in spikelet development control remains unclear. Here, we utilized CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants exhibiting various abnormal spikelet structures. Additionally, we found that OsPRMT6a could methylate arginine residues in the JA signal repressors OsJAZ1 and OsJAZ7. Arginine methylation of OsJAZ1 increased the affinity of OsJAZ1 for the JA receptors OsCOI1a and OsCOI1b in the presence of jasmonates (JAs), subsequently promoting the ubiquitination of OsJAZ1 by the SCFOsCOI1a/OsCOI1b complex and degradation via the 26S proteasome. This process ultimately released OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaired the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins became more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduced the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. Furthermore, we found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Thus, our study established a direct molecular link between arginine methylation and the JA signaling pathway.

18.
Plant Cell Environ ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695280

RESUMEN

There is often a trade-off effect between different agronomic traits due to gene pleiotropy, leading to a negative correlation between yield and resistance. Consequently, using gene-editing techniques to develop superior traits becomes challenging. Genetic resources that defy this constraint are scarce but hold great potential as targets for improvement through the utilisation of CRISPR. Transcription factors are critical in modulating numerous gene expressions across diverse biological processes. Here, we found that the trihelix transcription factor SlGT30 plays a role in drought resistance and tomato fruit development. We edited the SlGT30 gene with CRISPR/Cas9 technology and found that the knockout lines showed decreased stomata density in the leaves and large fruits. Subsequent examination revealed that cell ploidy was impacted in the leaves and fruits of SlGT30 knockout lines. SlGT30 knockout affected cell size through the endoreduplication pathway, manifested in decreased stomata density and reduced water loss. Consequently, this resulted in an enhancement of drought resistance. For the fruit, both cell size and cell number increased in the fruit pericarp of knockout lines, improving the fruit size and weight accordingly. Therefore, SlGT30 represents a promising candidate gene for gene editing in breeding practice.

19.
Int J Heart Fail ; 6(2): 70-75, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38694931

RESUMEN

With advancements in both pharmacologic and non-pharmacologic treatments, significant changes have occurred in heart failure (HF) management. The previous Korean HF registries, namely the Korea Heart Failure Registry (KorHF-registry) and Korean Acute Heart Failure Registry (KorAHF-registry), no longer accurately reflect contemporary acute heart failure (AHF) patients. Our objective is to assess contemporary AHF patients through a nationwide registry encompassing various aspects, such as clinical characteristics, management approaches, hospital course, and long-term outcomes of individuals hospitalized for AHF in Korea. This prospective observational multicenter cohort study (KorHF III) is organized by the Korean Society of Heart Failure. We aim to prospectively enroll 7,000 or more patients hospitalized for AHF at 47 tertiary hospitals in Korea starting from March 2018. Eligible patients exhibit signs and symptoms of HF and demonstrate either lung congestion or objective evidence of structural or functional cardiac abnormalities in echocardiography, or isolated right-sided HF. Patients will be followed up for up to 5 years after enrollment in the registry to evaluate long-term clinical outcomes. KorHF III represents the nationwide AHF registry that will elucidate the clinical characteristics, management strategies, and outcomes of contemporary AHF patients in Korea. Trial Registration: ClinicalTrials.gov Identifier: NCT04329234.

20.
Front Endocrinol (Lausanne) ; 15: 1359255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645427

RESUMEN

Diabetic vascular complications are prevalent and severe among diabetic patients, profoundly affecting both their quality of life and long-term prospects. These complications can be classified into macrovascular and microvascular complications. Under the impact of risk factors such as elevated blood glucose, blood pressure, and cholesterol lipids, the vascular endothelium undergoes endothelial dysfunction, characterized by increased inflammation and oxidative stress, decreased NO biosynthesis, endothelial-mesenchymal transition, senescence, and even cell death. These processes will ultimately lead to macrovascular and microvascular diseases, with macrovascular diseases mainly characterized by atherosclerosis (AS) and microvascular diseases mainly characterized by thickening of the basement membrane. It further indicates a primary contributor to the elevated morbidity and mortality observed in individuals with diabetes. In this review, we will delve into the intricate mechanisms that drive endothelial dysfunction during diabetes progression and its associated vascular complications. Furthermore, we will outline various pharmacotherapies targeting diabetic endothelial dysfunction in the hope of accelerating effective therapeutic drug discovery for early control of diabetes and its vascular complications.


Asunto(s)
Angiopatías Diabéticas , Endotelio Vascular , Humanos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/patología , Animales , Estrés Oxidativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA