RESUMEN
5-formylcytidine (f5C) is a unique post-transcriptional RNA modification found in mRNA and tRNA at the wobble site, playing a crucial role in mitochondrial protein synthesis and potentially contributing to the regulation of translation. Recent studies have unveiled that the f5C modifications may drive mitochondrial mRNA translation to power cancer metastasis. Accurate identification of f5C sites is essential for further unraveling their molecular functions and regulatory mechanisms, but there are currently no computational methods available for predicting their locations. In this study, we introduce an innovative ensemble approach, successfully enabling the computational recognition of Saccharomyces cerevisiae f5C. We conducted a comprehensive model selection process that involved multiple basic machine learning and deep learning algorithms such as recurrent neural networks, convolutional neural networks and Transformer-based models. Initially trained only on sequence information, these individual models achieved an AUROC ranging from 0.7104 to 0.7492. Through the integration of 32 novel domain-derived genomic features, the performance of individual models has significantly improved to an AUROC between 0.7309 and 0.8076. To further enhance accuracy and robustness, we then constructed the ensembles of these individual models with different combinations. The best performance attained by our ensemble models reached an AUROC of 0.8391. Shapley additive explanations were conducted to explain the significant contributions of genomic features, providing insights into the putative distribution of f5C across various topological regions and potentially paving the way for revealing their functional relevance within distinct genomic contexts. A freely accessible web server that allows real-time analysis of user-uploaded sites can be accessed at: www.rnamd.org/Resf5C-Pred.
RESUMEN
Continuous cropping of peanuts presents significant challenges to sustainable production due to soil-borne diseases like root rot caused by Fusarium species. In this study, field inoculation experiments treatments and in vitro agar plate confrontation tests were conducted, including non-inoculated controls (CK), inoculation with Pseudomonas fluorescens (PF), Fusarium oxysporum (FO), and co-inoculation with both (PF + FO). The aim was to explore the antifungal mechanisms of Pseudomonas fluorescens in mitigating root rot and enhancing peanut yield. The results indicated that PF and PF + FO significantly enhanced peanut root activity, as well as superoxide dismutase, catalase, and glutathione S-transferase activities, while simultaneously decreasing the accumulation of reactive oxygen species and malondialdehyde contents, compared to FO treatment. Additionally, PF treatment notably increased lignin content through enhanced phenylalanine ammonia lyase, cinnamate 3-hydroxylase, and peroxidase activity compared to CK and FO treatment. Moreover, PF treatment resulted in longer roots and a higher average diameter and surface area, potentially due to increased endogenous levels of auxin and zeatin riboside, coupled with decreased abscisic acid content. PF treatment significantly elevated chlorophyll content and the maximum photochemical efficiency of PSII in the light-adapted state, the actual photochemical efficiency and the proportion of PSII reaction centers open, leading to improved photosynthetic performance. Confrontation culture assays revealed PF's notable inhibitory effects on Fusarium oxysporum growth, subsequently reducing rot disease incidence in the field. Ultimately, PF treatment led to increased peanut yield by enhancing plant numbers and pod weight compared to FO treatment, indicating its potential in mitigating Fusarium oxysporum-induced root rot disease under continuous cropping systems.
RESUMEN
Cordyceps militaris, Chinese traditional medicinal fungus, has many bioactive properties. Cordycepin (3'-deoxyadenosine) is a major bioactive component of C. militaris. Various methods can significantly elevate cordycepin production, which suggests a diverse set of metabolic regulatory mechanisms. Thus, we aimed to identify transcription factors that regulate cordycepin biosynthesis pathways. Transcriptome analysis of wild-type C. militaris, C. militaris GYS60, a cordycepin high-producing strain, and C. militaris GYS80, a low-producing strain, were used to measure expression and function of genes related to cordycepin biosynthesis. The transcriptome expression data were confirmed by quantitative real-time polymerase chain reaction. We identified 155 relevant transcription factors in 19 families that included Fork head/winged helix factors, other C4 zinc finger-type factors, C2H2 zinc finger factors, tryptophan cluster factors, nuclear receptors with C4 zinc fingers, homeodomain factors, and Rel homology region factors. Energy generation and amino acid conversion pathways were activated in GYS60 so that abundance of cordycepin precursors was increased. Genes and transcription factors for rate-limiting enzymes in these pathways were identified. Overexpression of two key transcription factors, Kruppel-like factor 4 (Klf4) and Retinoid X receptor alpha (Rxra), promoted high cordycepin production in GYS60. In GYS60, Klf4 and Rxra were responsible for upregulation of genes in cordycepin biosynthesis, namely an oxidoreductase, 3',5'-cyclic AMP phosphodiesterase, a transferase, and adenylate cyclase. Upregulation of these genes increased 3'-AMP content, thereby elevating cordycepin synthesis.
Asunto(s)
Cordyceps , Desoxiadenosinas , Factor 4 Similar a Kruppel , Desoxiadenosinas/biosíntesis , Cordyceps/genética , Cordyceps/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Regulación Fúngica de la Expresión Génica , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vías BiosintéticasRESUMEN
Osteomyelitis caused by Staphylococcus aureus can involve the persistent infection of osteocytes. We sought to determine if current clinically utilized antibiotics were capable of clearing an intracellular osteocyte S. aureus infection. Rifampicin, vancomycin, levofloxacin, ofloxacin, amoxicillin, oxacillin, doxycycline, linezolid, gentamicin, and tigecycline were assessed for their minimum inhibitory concentration (MIC) and minimum bactericidal concentrations against 12 S. aureus strains, at pH 5.0 and 7.2 to mimic lysosomal and cytoplasmic environments, respectively. Those antibiotics whose bone estimated achievable concentration was commonly above their respective MIC for the strains tested were further assayed in a human osteocyte infection model under acute and chronic conditions. Osteocyte-like cells were treated at 1×, 4×, and 10× the MIC for 1 and 7 days following infection (acute model), or at 15 and 21 days of infection (chronic model). The intracellular effectivity of each antibiotic was measured in terms of CFU reduction, small colony variant formation, and bacterial mRNA expression change. Only rifampicin, levofloxacin, and linezolid reduced intracellular CFU numbers significantly in the acute model. Consistent with the transition to a non-culturable state, few if any CFU could be recovered from the chronic model. However, no treatment in either model reduced the quantity of bacterial mRNA or prevented non-culturable bacteria from returning to a culturable state. These findings indicate that S. aureus adapts phenotypically during intracellular infection of osteocytes, adopting a reversible quiescent state that is protected against antibiotics, even at 10× their MIC. Thus, new therapeutic approaches are necessary to cure S. aureus intracellular infections in osteomyelitis.
Asunto(s)
Antibacterianos , Gentamicinas , Levofloxacino , Linezolid , Pruebas de Sensibilidad Microbiana , Osteocitos , Osteomielitis , Rifampin , Infecciones Estafilocócicas , Staphylococcus aureus , Vancomicina , Antibacterianos/farmacología , Osteomielitis/tratamiento farmacológico , Osteomielitis/microbiología , Staphylococcus aureus/efectos de los fármacos , Humanos , Osteocitos/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Levofloxacino/farmacología , Rifampin/farmacología , Rifampin/uso terapéutico , Vancomicina/farmacología , Linezolid/farmacología , Gentamicinas/farmacología , Tigeciclina/farmacología , Ofloxacino/farmacología , Doxiciclina/farmacología , Amoxicilina/farmacología , Oxacilina/farmacologíaRESUMEN
Despite the widespread utilizable value of 3-oxazolines, mild and efficient access to such a class of unique structures still remains, to date, a challenge. Herein, we present a [3 + 2] annulation strategy, guided by the retrosynthetic principle of [CO + CCN], that utilizes vinyl azides as the CCN module and aldehydes as the CO module. This approach enables the efficient construction of the 3-oxazoline framework with remarkable features, including operational simplicity, environmental friendliness, and high efficiency. Notably, it solely requires the addition of inexpensive and readily available N-hydroxyphthalimide (NHPI) and air oxygen to obtain the desired product. It also provides a new way to generate the hydroxyl radical, which is produced by the homolysis of peroxycarboxylic acid. In addition, control experiments, X-ray crystallographic analysis, high-resolution mass spectrometry (HRMS), and density functional theory (DFT) calculations afford evidence for the key intermediates (hydroxyl radical, carboxyl radical, imine radical, hydroxyl substituted amide derivatives), further confirming the path for realization of 3-oxazolines.
RESUMEN
Selenosulfones, as pivotal pharmaceutical molecule frameworks, have become a research hotspot in modern organic synthesis due to their vital need for efficient preparation. Herein, we have developed an iron-catalyzed four-component controllable radical tandem reaction of allenes involving cycloketone oxime esters, 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO), and diphenyl diselenides for the synthesis of complex selenosulfones. This is the first case of achieving the 1,2-selenosulfonylation of allenes via a radical process, wherein precise control of radical rates and polarity matching enhance high regioselective conversion. The reaction conditions are ecofriendly and mild with step-efficiency by forming two new C-S bonds and one C-Se bond in one pot. Moreover, the 1,2-selenosulfonylation of allenes can be achieved by replacing cycloketone oxime esters with aryldiazonium tetrafluoroborates in this system.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Realgar (As2S2 or As4S4) is a traditional Chinese medicine (TCM) containing arsenic. Existing studies have shown that it has genotoxicity under long-term use with large doses. Niuhuang Jiedu (NHJD) is a Chinese medicine prescription containing realgar and seven other TCMs. Whether the multiple TCMs combination in NHJD can reduce the genotoxicity induced by realgar in equivalent doses is still unknown. AIM OF THE STUDY: To research the effect of NHJD on realgar's genotoxicity and the possible mechanism involved based on the arsenic methylation metabolic pathway. MATERIAL AND METHODS: Six groups (control, realgar (0.8 g/kg), NHJD (12.48 g/kg), as well as Glycyrrhiza uralensis Fisch (GU), Scutellaria baicalensis Georg (SB), Rheum palmatum L (RP) plus equivalent doses of realgar, respectively) were set up. ICR mice were intragastric administered for 12 weeks. First, genotoxicology tests were conducted to evaluate the effect of NHJD, GU, SB, and RP on reducing realgar's genotoxicity. The inorganic arsenic (iAs), dimethyl arsenic acid (DMA), and monomethyl arsenic acid (MMA) were determined by HPLC-AFS, and the iAs%, MMA%, DMA%, primary methylation index (PMI), etc. Were calculated. Meanwhile, the S-adenosyl methionine (SAM) and arsenate reductase (ARR) levels, the arsenic (+3)methyltransferase (As3MT), purine-nucleoside phosphorylase (PNP), glutathione S-transfer omega1 (GSTO1) gene expression were detected, aimed to explore the possible alleviation mechanisms of NHJD. RESULTS: The combination of multiple TCMs in NHJD decreased the levels of MN, SPA%, and DNA damage caused by realgar, with similar effects observed when SB, RP, and GU were used separately with realgar. Notably, the iAs% significantly decreased, while DMA% and PMI notably increased in the NHJD and realgar + SB (or RP) groups compared to the realgar-only group (P < 0.05). Increases in SAM and ARR levels were observed across various groups, but only the ARR increase in the NHJD group was statistically significant. Moreover, significant increases in As3MT mRNA and GSTO1 mRNA were noted in the NHJD group, and PNP mRNA levels significantly rose in the realgar + SB group. CONCLUSIONS: This study revealed that NHJD could attenuate the genotoxic effects of realgar. The botanicals SB, RP, and GU within NHJD may be key contributors to this effect. Enhancements in arsenic methylation capabilities through increased levels of SAM and ARR and elevated gene expressions of As3MT, PNP, and GSTO1 suggest potential mechanisms behind these findings.
Asunto(s)
Arsenicales , Medicamentos Herbarios Chinos , Ratones Endogámicos ICR , Sulfuros , Animales , Medicamentos Herbarios Chinos/farmacología , Sulfuros/farmacología , Sulfuros/toxicidad , Masculino , Ratones , Daño del ADN/efectos de los fármacos , Mutágenos/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Productos BiológicosRESUMEN
Examination of bacteria/host cell interactions is important for understanding the aetiology of many infectious diseases. The colony forming unit (CFU) has been the standard for quantifying bacterial burden for the past century, however, this suffers from low sensitivity and is dependent on bacterial culturability in vitro. Our data demonstrate the discrepancy between the CFU and bacterial genome copy number in an osteomyelitis-relevant co-culture system and we confirm diagnosis and quantify bacterial load in clinical bone specimens. This study provides an improved workflow for the quantification of bacterial burden in such cases.
Asunto(s)
Osteomielitis , Osteomielitis/microbiología , Humanos , Carga Bacteriana , Técnicas de Cocultivo , Recuento de Colonia Microbiana , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificaciónRESUMEN
Staphylococcus aureus is a major causative pathogen of osteomyelitis. Intracellular infections of resident bone cells including osteocytes can persist despite gold-standard clinical intervention. The mechanisms by which intracellular S. aureus evades antibiotic therapy are unknown. In this study, we utilised an in vitro S. aureus infection model of human osteocytes to investigate whether antibiotic-mediated dysregulation of autophagy contributes to this phenomenon. Infected or non-infected osteocyte-like cells were exposed to combinations of rifampicin, vancomycin, and modulators of autophagy. Intracellular bacterial growth characteristics were assessed using colony-forming unit (CFU) analysis, viable bacterial DNA abundance, and the rate of escape into antibiotic-free medium, together with measures of autophagic flux. Rifampicin, alone or in combination with vancomycin, caused a rapid decrease in the culturability of intracellular bacteria, concomitant with stable or increased absolute bacterial DNA levels. Both antibiotics significantly inhibited autophagic flux. However, modulation of autophagic flux did not affect viable bacterial DNA levels. In summary, autophagy was shown to be a factor in the host-pathogen relationship in this model, as its modulation affected the growth state of intracellular S. aureus with respect to both their culturability and propensity to escape the intracellular niche. While rifampicin and vancomycin treatments moderately suppressed autophagic flux acutely, this did not explain the paradoxical response of antibiotic treatment in decreasing S. aureus culturability whilst failing to clear bacterial DNA and hence intracellular bacterial load. Thus, off-target effects of rifampicin and vancomycin on autophagic flux in osteocyte-like cells could not explain the persistent S. aureus infection in these cells.
Asunto(s)
Antibacterianos , Autofagia , Osteocitos , Rifampin , Infecciones Estafilocócicas , Staphylococcus aureus , Vancomicina , Autofagia/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Osteocitos/efectos de los fármacos , Osteocitos/microbiología , Antibacterianos/farmacología , Humanos , Vancomicina/farmacología , Rifampin/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Interacciones Huésped-Patógeno , ADN Bacteriano/genéticaRESUMEN
Pickering foam is a type of foam stabilized by solid particles known as Pickering stabilizers. These solid stabilizers adsorb at the liquid-gas interface, providing superior stability to the foam. Because of its high stability, controllability, versatility, and minimal environmental impact, nanomaterial-stabilized Pickering foam has opened up new possibilities and development prospects for foam applications. This review provides an overview of the current state of development of Pickering foam stabilized by a wide range of nanomaterials, including cellulose nanomaterials, chitin nanomaterials, silica nanoparticles, protein nanoparticles, clay mineral, carbon nanotubes, calcium carbonate nanoparticles, MXene, and graphene oxide nanosheets. Particularly, the preparation and surface modification methods of various nanoparticles, the fundamental properties of nanomaterial-stabilized Pickering foam, and the synergistic effects between nanoparticles and surfactants, functional polymers, and other additives are systematically introduced. In addition, the latest progress in the application of nanomaterial-stabilized Pickering foam in the oil industry, food industry, porous functional material, and foam flotation field is highlighted. Finally, the future prospects of nanomaterial-stabilized Pickering foam in different fields, along with directions for further research and development directions, are outlined.
RESUMEN
20(S)-Protopanaxadiol (PPD) is one of the bioactive ingredients in ginseng and possesses neuroprotective properties. Brain-type creatine kinase (CK-BB) is an enzyme involved in brain energy homeostasis via the phosphocreatine-creatine kinase system. We previously identified PPD as directly bound to CK-BB and activated its activity in vitro. In this study, we explored the antidepressive effects of PPD that target CK-BB. First, we conducted time course studies on brain CK-BB, behaviors, and hippocampal structural plasticity responses to corticosterone (CORT) administration. Five weeks of CORT injection reduced CK-BB activity and protein levels and induced depression-like behaviors and hippocampal structural plasticity impairment. Next, a CK inhibitor and an adeno-associated virus-targeting CKB were used to diminish CK-BB activity or its expression in the brain. The loss of CK-BB in the brain led to depressive behaviors and morphological damage to spines in the hippocampus. Then, a polyclonal antibody against PPD was used to determine the distribution of PPD in the brain tissues. PPD was detected in the hippocampus and cortex and observed in astrocytes, neurons, and vascular endotheliocytes. Finally, different PPD doses were used in the chronic CORT-induced depression model. Treatment with a high dose of PPD significantly increased the activity and expression of CK-BB after long-term CORT injection. In addition, PPD alleviated the damage to depressive-like behaviors and structural plasticity induced by repeated CORT injection. Overall, our study revealed the critical role of CK-BB in mediating structural plasticity in CORT-induced depression and identified CK-BB as a therapeutic target for PPD, allowing us to treat stress-related mood disorders.
Asunto(s)
Antidepresivos , Corticosterona , Forma BB de la Creatina-Quinasa , Depresión , Sapogeninas , Animales , Humanos , Masculino , Ratones , Ratas , Antidepresivos/farmacología , Antidepresivos/administración & dosificación , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Forma BB de la Creatina-Quinasa/metabolismo , Forma BB de la Creatina-Quinasa/genética , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Panax/química , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Ratas Sprague-Dawley , Sapogeninas/farmacologíaRESUMEN
Seamless phase 2/3 design has become increasingly popular in clinical trials with a single endpoint. Trials that define success based on the achievement of all co-primary endpoints (CPEs) encounter the challenge of inflated type 2 error rates, often leading to an overly large sample size. To tackle this challenge, we introduced a seamless phase 2/3 design strategy that employs Bayesian predictive power (BPP) for futility monitoring and sample size re-estimation at interim analysis. The correlations among multiple CPEs are incorporated using a Dirichlet-multinomial distribution. An alternative approach based on conditional power (CP) was also discussed for comparison. A seamless phase 2/3 vaccine trial employing four binary endpoints under the non-inferior hypothesis serves as an example. Our results spotlight that, in scenarios with relatively small phase 2 sample sizes (e.g., 50 or 100 subjects), the BPP approach either outperforms or matches the CP approach in terms of overall power. Particularly, with n1 = 50 and ρ = 0, BPP showcases an overall power advantage over CP by as much as 8.54%. Furthermore, when the phase 2 stage enrolled more subjects (e.g., 150 or 200), especially with a phase 2 sample size of 200 and ρ = 0, the BPP approach evidences a peak difference of 5.76% in early stop probability over the CP approach, emphasizing its better efficiency in terminating futile trials. It's noteworthy that both BPP and CP methodologies maintained type 1 error rates under 2.5%. In conclusion, the integration of the Dirichlet-Multinominal model with the BPP approach offers improvement in certain scenarios over the CP approach for seamless phase 2/3 trials with multiple CPEs.
Asunto(s)
Inutilidad Médica , Proyectos de Investigación , Humanos , Teorema de Bayes , Tamaño de la Muestra , ProbabilidadRESUMEN
The intracellular infection of osteocytes represents a clinically important aspect of osteomyelitis. However, few human osteocyte in vitro models exist and the differentiation of immature osteoblasts to an osteocyte stage typically takes at least 4-weeks of culture, making the study of this process challenging and time consuming. The osteosarcoma cell line Saos-2 has proved to be a useful model of human osteoblast to mature osteocyte differentiation. Culture under osteogenic conditions in a standard normoxic (21% O2 ) atmosphere results in reproducible mineralization and acquisition of mature osteocyte markers over the expected 28-35 day culture period. In order to expedite experimental assays, we tested whether reducing available oxygen to mimic concentrations experienced by osteocytes in vivo would increase the rate of differentiation. Cells cultured under 1% O2 exhibited maximal mineral deposition by 14 days. Early (COLA1, MEPE) and mature (PHEX, DMP1, GJA1, SOST) osteocyte markers were upregulated earlier under hypoxia compared to normoxia. Cells differentiated under 1% O2 for 14 days displayed a similar ability to internalize Staphylococcus aureus as day 28 cells grown under normoxic conditions. Thus, low oxygen accelerates Saos-2 osteocyte differentiation, resulting in a useful human osteocyte-like cell model within 14 days.
Asunto(s)
Osteocitos , Staphylococcus aureus , Humanos , Osteocitos/metabolismo , Regulación de la Expresión Génica , Osteoblastos/metabolismo , Diferenciación Celular , Hipoxia/metabolismo , Oxígeno/metabolismo , Células CultivadasRESUMEN
The mechanisms responsible for stem growth in peanut (Arachis hypogaea L.) cultivars with varying plant heights remain unclear, despite the significant impact of plant height on peanut yield. Therefore, this study aimed to investigate the underlying mechanisms of peanut stem growth using phenotypic, physiological, transcriptomic, and metabolomic analyses. The findings revealed that the tallest cultivar, HY33, exhibited the highest rate of stem growth and accumulated the most stem dry matter, followed by the intermediate cultivar, SH108, while the dwarf cultivar, Df216, displayed the lowest values. Furthermore, SH108 exhibited a higher harvest index, as well as superior pod and kernel yields compared to both HY33 and Df216. Transcriptome and metabolome analyses identified differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) associated with phenylpropanoid and flavonoid biosynthesis. Notably, downregulated DEGs in Df216/HY33 and Df216/SH108 included phenylalanine ammonia-lyase (PAL), caffeoyl-CoA O-methyltransferase (COMT), and ferulate-5-hydroxylase (F5H), while downregulated DEMs included p-coumaryl alcohol, chlorogenic acid, and L-epicatechin. Compared to HY33, the reduced activities of PAL, COMT, and F5H resulted in a decreased stem lignin content in Df216. Additionally, downregulated DEGs involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis were identified in Df216/HY33, which contributed to the lowest levels of GA1, GA3, and BR contents in Df216. The results suggest that the dwarf phenotype arises from impaired GA and BR biosynthesis and signaling, resulting in a slower stem growth rate and reduced lignin accumulation.
Asunto(s)
Arachis , Transcriptoma , Transcriptoma/genética , Arachis/metabolismo , Lignina/metabolismo , Perfilación de la Expresión Génica , Metabolómica , Regulación de la Expresión Génica de las PlantasRESUMEN
Traditional Chinese medicine (TCM) databases play a vital role in bridging the gap between TCM and modern medicine, as well as in promoting the popularity of TCM. Elucidating the bioactive ingredients of Chinese medicinal materials is key to TCM modernization and new drug discovery. However, one drawback of current TCM databases is the lack of quantitative data on the constituents of Chinese medicinal materials. Herein, we present ccTCM, a web-based platform designed to provide a component and compound-content-based resource on TCM and analysis services for medical experts. In terms of design features, ccTCM combines resource distribution, similarity analysis, and molecular-mechanism analysis to accelerate the discovery of bioactive ingredients in TCM. ccTCM contains 273 Chinese medicinal materials commonly used in clinical settings, covering 29 functional classifications. By searching and comparing, we finally adopted 2043 studies, from which we collected the compounds contained in each TCM with content greater than 0.001 %, and a total of 1449 were extracted. Subsequently, we collected 40,767 compound-target pairs by integrating multiple databases. Taken together, ccTCM is a versatile platform that can be used by TCM scientists to perform scientific and clinical TCM studies based on quantified ingredients of Chinese medicinal materials. ccTCM is freely accessible at http://www.cctcm.org.cn.
RESUMEN
Wheat has a specific preference for NO3 - and shows toxicity symptoms under high NH4 + concentrations. Increasing the nitrate supply may alleviate ammonium stress. Nevertheless, the mechanisms underlying the nitrate regulation of wheat root growth to alleviate ammonium toxicity remain unclear. In this study, we integrated physiological and weighted gene co-expression network analysis (WGCNA) to identify the hub genes involved in nitrate alleviation of ammonium toxicity at the wheat seedling stage. Five NH4 +/NO3 - ratio treatments, including 100/0 (Na), 75/25 (Nr1), 50/50 (Nr2), 25/75 (Nr3), and 0/100 (Nn) were tested in this study. The results showed that sole ammonium treatment (Na) increased the lateral root number but reduced root biomass. Increasing the nitrate supply significantly increased the root biomass. Increasing nitrate levels decreased abscisic acid (ABA) content and increased auxin (IAA) content. Furthermore, we identified two modules (blue and turquoise) using transcriptome data that were significantly related to root physiological growth indicators. TraesCS6A02G178000 and TraesCS2B02G056300 were identified as hub genes in the two modules which coded for plastidic ATP/ADP-transporter and WRKY62 transcription factors, respectively. Additionally, network analysis showed that in the blue module, TraesCS6A02G178000 interacts with downregulated genes that coded for indolin-2-one monooxygenase, SRG1, DETOXIFICATION, and wall-associated receptor kinase. In the turquoise module, TraesCS2B02G056300 was highly related to the genes that encoded ERD4, ERF109, CIGR2, and WD40 proteins, and transcription factors including WRKY24, WRKY22, MYB30, and JAMYB, which were all upregulated by increasing nitrate supply. These studies suggest that increasing the nitrate supply could improve root growth and alleviate ammonium toxicity through physiological and molecular regulation networks, including ROS, hormonal crosstalk, and transcription factors.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Niu Huang Jie Du prescription (NHJD) is a traditional Chinese medicine (TCM) widely used in patients suffering from excessive inner fire toxin (Huo Du Nei Sheng) syndrome, such as sore throat, gingival swelling, and pain, mouth and tongue sores, etc. This formula contains realgar (As4S4) which is one of the 28 toxic medicinal materials promulgated by the Chinese Ministry of Health. Many studies reported its toxicity on the liver and kidney, and the detoxification effect of NHJD. However, its detoxification mechanism is still unclear. AIM OF THE STUDY: To clarify the detoxification mechanism of NHJD to realgar, this study evaluated the detoxification effect of NHJD on realgar exposure in mice, and analyzed differences in mRNA expression profiles in liver tissues and associated functional predictions. MATERIAL AND METHODS: ICR mice were administered with NHJD, realgar, and CMC-Na as blank control for 12 weeks, respectively. Liver injury was evaluated by histopathologic examination and liver mRNA gene were sequenced by Illumina. Differentially expressed gene, functionally enrichment and protein association network analysis were conducted. RESULTS: 43 genes were screened out, among which 15 genes in the realgar group were decreased, but the extent of the decline has been restored in the NHJD group. The remaining 28 genes have exactly the opposite trends. Functional module analysis revealed that those detoxification function-related genes were primarily for positive regulation of glutathione metabolism, P450 on the metabolism of exogenous compounds, oxidative stress and immune-related, etc. CONCLUSIONS: The results indicated that realgar mainly causes liver damage by changing the common enzymes of drug metabolism, especially the expression of genes related to CYPs, GSTs family, oxidative stress, and complement immunity, while the TCM prescription NHJD has a regulatory effect on the abnormal expression of corresponding genes. Our results will provide some clues for the detoxification mechanism of arsenic-containing TCM prescriptions.
Asunto(s)
Arsenicales , Medicamentos Herbarios Chinos , Animales , Arsenicales/farmacología , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Hígado , Medicina Tradicional China/métodos , Ratones , Ratones Endogámicos ICR , Prescripciones , ARN/metabolismo , ARN/farmacología , ARN Mensajero/metabolismo , Sulfuros/farmacologíaRESUMEN
The regulation of vitamin D3 actions in humans occurs mainly through the Cytochrome P450 24-hydroxylase (CYP24A1) enzyme activity. CYP24A1 hydroxylates both 25-hydroxycholecalciferol (25(OH)D3) and 1,25-dihydroxycholecalciferol (1,25(OH)2D3), which is the first step of vitamin D catabolism. An abnormal status of the upregulation of CYP24A1 occurs in many diseases, including chronic kidney disease (CKD). CYP24A1 upregulation in CKD and diminished activation of vitamin D3 contribute to secondary hyperparathyroidism (SHPT), progressive bone deterioration, and soft tissue and cardiovascular calcification. Previous studies have indicated that CYP24A1 inhibition may be an effective strategy to increase endogenous vitamin D activity and decrease SHPT. This study has designed and synthesized a novel C-24 O-methyloxime analogue of vitamin D3 (VD1-6) to have specific CYP24A1 inhibitory properties. VD1-6 did not bind to the vitamin D receptor (VDR) in concentrations up to 10-7 M, assessed by a VDR binding assay. The absence of VDR binding by VD1-6 was confirmed in human embryonic kidney HEK293T cultures through the lack of CYP24A1 induction. However, in silico docking experiments demonstrated that VD1-6 was predicted to have superior binding to CYP24A1, when compared to that of 1,25(OH)2D3. The inhibition of CYP24A1 by VD1-6 was also evident by the synergistic potentiation of 1,25(OH)2D3-mediated transcription and reduced 1,25(OH)2D3 catabolism over 24 h. A further indication of CYP24A1 inhibition by VD1-6 was the reduced accumulation of the 24,25(OH)D3, the first metabolite of 25(OH)D catabolism by CYP24A1. Our findings suggest the potent CYP24A1 inhibitory properties of VD1-6 and its potential for testing as an alternative therapeutic candidate for treating SHPT.
Asunto(s)
Colecalciferol , Insuficiencia Renal Crónica , Colecalciferol/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Células HEK293 , Humanos , Oximas , Receptores de Calcitriol/metabolismo , Vitamina D , Vitamina D3 24-Hidroxilasa/metabolismoRESUMEN
Osteopetrosis is a heterogeneous group of rare hereditary diseases characterized by increased bone mass of poor quality. Autosomal-dominant osteopetrosis type II (ADOII) is most often caused by mutation of the CLCN7 gene leading to impaired bone resorption. Autosomal recessive osteopetrosis (ARO) is a more severe form and is frequently accompanied by additional morbidities. We report an adult male presenting with classical clinical and radiological features of ADOII. Genetic analyses showed no amino-acid-converting mutation in CLCN7 but an apparent haploinsufficiency and suppression of CLCN7 mRNA levels in peripheral blood mononuclear cells. Next generation sequencing revealed low-frequency intronic homozygous variations in CLCN7, suggesting recessive inheritance. In silico analysis of an intronic duplication c.595-120_595-86dup revealed additional binding sites for Serine- and Arginine-rich Splicing Factors (SRSF), which is predicted to impair CLCN7 expression. Quantitative backscattered electron imaging and histomorphometric analyses revealed bone tissue and material abnormalities. Giant osteoclasts were present and additionally to lamellar bone, and abundant woven bone and mineralized cartilage were observed, together with increased frequency and thickness of cement lines. Bone mineralization density distribution (BMDD) analysis revealed markedly increased average mineral content of the dense bone (CaMean T-score + 10.1) and frequency of bone with highest mineral content (CaHigh T-score + 19.6), suggesting continued mineral accumulation and lack of bone remodelling. Osteocyte lacunae sections (OLS) characteristics were unremarkable except for an unusually circular shape. Together, our findings suggest that the reduced expression of CLCN7 mRNA in osteoclasts, and possibly also osteocytes, causes poorly remodelled bone with abnormal bone matrix with high mineral content. This together with the lack of adequate bone repair mechanisms makes the material brittle and prone to fracture. While the skeletal phenotype and medical history were suggestive of ADOII, genetic analysis revealed that this is a possible mild case of ARO due to deep intronic mutation.
Asunto(s)
Canales de Cloruro , Osteopetrosis , Canales de Cloruro/genética , Homocigoto , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Mutación , Osteopetrosis/diagnóstico , Osteopetrosis/genética , Osteopetrosis/metabolismo , Fenotipo , ARN MensajeroRESUMEN
The sustainable development of agriculture has been challenged by the decline of soil quality and the change of climate. It is well known that soil carbon (C) sequestration plays crucial roles in improving soil structural stability, mitigating greenhouse emissions, and promoting plant nutrient supply. Therefore, a 3-year field experiment was conducted to evaluate the effects of different residue and tillage management practices on soil C sequestration in a wheat-peanut rotation system. Four treatments were studied: moldboard plow tillage with wheat residue returning (PTS), rotary tillage with wheat residue returning (RTS), no tillage with wheat residue mulching (NTS), and no tillage with wheat residue removal (NT). Our results indicated that residue return favored the improvement of soil C sequestration capacity relative to residue removal. In addition, NTS improved soil C sequestration in the surface soil layer (0-5 cm), but markedly reduced soil C sequestration in the deeper soil layers (5-30 cm). NTS thus caused a more obvious soil stratification phenomenon, which was not conducive to improving soil quality. At the 5-30 cm soil depths, the soil labile organic C fractions concentrations, carbon pool management index (CPMI), macroaggregates-associated C storage, intra-aggregate C fractions concentrations, and soil total organic carbon (TOC) storage under PTS were all higher than those under other treatments. Overall, a peanut strategic cultivation management mode that combines moldboard plow tillage and wheat residue return may be used as a reference for optimizing agricultural soil management to achieve the improvement of soil C sequestration capacity in a wheat-peanut rotation system.