Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Biotechnol Bioeng ; 121(3): 1144-1162, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184812

RESUMEN

During the COVID-19 pandemic, expedient vaccine production has been slowed by the shortage of safe and effective raw materials, such as adjuvants, essential components to enhance the efficacy of vaccines. Monophosphoryl lipid A (MPLA) is a potent and safe adjuvant used in human vaccines, including the Shingles vaccine, Shingrix. 3-O-desacyl-4'-monophosphoryl lipid A (MPL), a representative MPLA adjuvant commercialized by GSK, was prepared via chemical conversion of precursors isolated from Salmonella typhimurium R595. However, the high price of these materials limits their use in premium vaccines. To combat the scarcity and high cost of safe raw materials for vaccines, we need to develop a feasible MPLA production method that is easily scaled up to meet industrial requirements. In this study, we engineered peptidoglycan and outer membrane biosynthetic pathways in Escherichia coli and developed a Escherichia coli strain, KHSC0055, that constitutively produces EcML (E. coli-produced monophosphoryl lipid A) without additives such as antibiotics or overexpression inducers. EcML production was optimized on an industrial scale via high-density fed-batch fermentation, and obtained 2.7 g of EcML (about 135,000 doses of vaccine) from a 30-L-scale fermentation. Using KHSC0055, we simplified the production process and decreased the production costs of MPLA. Then, we applied EcML purified from KHSC0055 as an adjuvant for a COVID-19 vaccine candidate (EuCorVac-19) currently in clinical trial stage III in the Philippines. By probing the efficacy and safety of EcML in humans, we established KHSC0055 as an efficient cell factory for MPLA adjuvant production.


Asunto(s)
Adyuvantes de Vacunas , Lípido A/análogos & derivados , Vacunas , Humanos , Escherichia coli/genética , Vacunas contra la COVID-19 , Pandemias , Adyuvantes Inmunológicos
2.
Biomolecules ; 12(8)2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-36008976

RESUMEN

The Warburg effect, i.e., the utilization of glycolysis under aerobic conditions, is recognized as a survival advantage of cancer cells. However, how the glycolytic activity is affected during drug resistance acquisition has not been explored at single-cell resolution. Because the relative ratio of the splicing isoform of pyruvate kinase M (PKM), PKM2/PKM1, can be used to estimate glycolytic activity, we utilized a single-molecule fluorescence in situ hybridization (SM-FISH) method to simultaneously quantify the mRNA levels of PKM1 and PKM2. Treatment of HCT116 cells with gefitinib (GE) resulted in two distinct populations of cells. However, as cells developed GE resistance, the GE-sensitive population with reduced PKM2 expression disappeared, and GE-resistant cells (Res) demonstrated enhanced PKM1 expression and a tightly regulated PKM2/PKM1 ratio. Our data suggest that maintaining an appropriate PKM2 level is important for cell survival upon GE treatment, whereas increased PKM1 expression becomes crucial in GE Res. This approach demonstrates the importance of single-cell-based analysis for our understanding of cancer cell metabolic responses to drugs, which could aid in the design of treatment strategies for drug-resistant cancers.


Asunto(s)
Glucólisis , Piruvato Quinasa , Línea Celular Tumoral , Resistencia a Medicamentos , Hibridación Fluorescente in Situ , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
3.
iScience ; 25(7): 104517, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35754713

RESUMEN

Clioquinol (CQ) is a hypoxic mimicker to activate hypoxia-inducible factor-1α (HIF-1α) by inhibiting HIF-1α specific asparaginyl hypoxylase (FIH-1). The structural similarity of the Jumonji C (JmjC) domain between FIH-1 and JmjC domain-containing histone lysine demethylases (JmjC-KDMs) led us to investigate whether CQ could inhibit the catalytic activities of JmjC-KDMs. Herein, we showed that CQ inhibits KDM4A/C, KDM5A/B, and KDM6B and affects H3K4me3, H3K9me3, and H3K27me3 marks, respectively. An integrative analysis of the histone methylome and transcriptome data revealed that CQ-mediated JmjC-KDM inhibition altered the transcription of target genes through differential combinations of KDMs and transcription factors. Notably, functional enrichment of target genes showed that CQ and hypoxia commonly affected the response to hypoxia, VEGF signaling, and glycolysis, whereas CQ uniquely altered apoptosis/autophagy and cytoskeleton/extracellular matrix organization. Our results suggest that CQ can be used as a JmjC-KDM inhibitor, HIF-α activator, and an alternative therapeutic agent in hypoxia-based diseases.

4.
Molecules ; 27(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458656

RESUMEN

Recognition of intracellular lipopolysaccharide (LPS) by Caspase-4 (Casp-4) is critical for host defense against Gram-negative pathogens. LPS binds to the N-terminal caspase activation and recruitment domain (CARD) of procaspase-4, leading to auto-proteolytic activation followed by pro-inflammatory cytokine release and pyroptotic cell death. Aberrant hyper-activation of Casp-4 leads to amplification of the inflammatory response linked to sepsis. While the active site of a caspase has been targeted with peptide inhibitors, inhibition of LPS-Casp-4 interaction is an emerging strategy for the development of selective inhibitors with a new mode of action for treating infectious diseases and sepsis induced by LPS. In this study, a high-throughput screening (HTS) system based on fluorescence polarization (FP) was devised to identify inhibitors of the LPS and Casp-4 interaction. Using HTS and IC50 determination and subsequently showing inhibited Casp-4 activity, we demonstrated that the LPS-Casp-4 interaction is a druggable target for Casp-4 inhibition and possibly a non-canonical inflammatory pathway.


Asunto(s)
Inhibidores de Caspasas , Caspasas Iniciadoras , Caspasas , Lipopolisacáridos , Inhibidores de Caspasas/química , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Caspasas Iniciadoras/metabolismo , Fluorescencia , Humanos , Inflamasomas/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Sepsis/metabolismo
5.
Sci Rep ; 11(1): 17130, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429501

RESUMEN

The role of matrix metalloproteinase-2 (MMP-2) in tumor cell migration has been widely studied, however, the characteristics and effects of MMP-2 in clinical sample of metastatic colorectal cancer (CRC) remain poorly understood. Here, in order to unveil the perturbed proteomic signal during MMP-2 induced cancer progression, we analyzed plasma proteome of CRC patients according to disease progression, HCT116 cancer secretome upon MMP-2 knockdown, and publicly available CRC tissue proteome data. Collectively, the integrative analysis of multi-layered proteomes revealed that a protein cluster containing EMT (Epithelial-to-Mesenchymal Transition)-associated proteins such as CD9-integrin as well as MMP-2. The proteins of the cluster were regulated by MMP-2 perturbation and exhibited significantly increased expressions in tissue and plasma as disease progressed from TNM (Tumor, Node, and Metastasis) stage I to II. Furthermore, we also identified a plausible association between MMP-2 up-regulation and activation of focal adhesion kinase signaling in the proteogenomic analysis of CRC patient tissues. Based on these comparative and integrative analyses, we suggest that the high invasiveness in the metastatic CRC resulted from increased secretion of MMP-2 and CD9-integrin complex mediated by FAK signaling activation.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Células Cultivadas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Quinasa 1 de Adhesión Focal/genética , Células HCT116 , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metástasis de la Neoplasia , Proteoma/genética , Proteoma/metabolismo , Transducción de Señal , Tetraspanina 29/genética , Tetraspanina 29/metabolismo
6.
Biochem Cell Biol ; 98(2): 219-226, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31545907

RESUMEN

Extensive studies have been reported the non-canonical functions of pyruvate kinase M2 (PKM2) as a kinase, transcriptional regulator, and even cell-to-cell communicator, emphasizing its importance in various signaling pathways. However, the role of secreted PKM2 in cancer progression and its signaling pathway is yet to be elucidated. In this study, we found that extracellular PKM2 enhanced the migration of low-metastatic, benign colon cancer cells by upregulating claudin-1 expression and internalizing it to the cytoplasm and nucleus. Knock-down of claudin-1 significantly reduced extracellular PKM2-induced cell migration. Inhibition of either protein kinase C (PKC) or epidermal growth factor receptor (EGFR) resulted in a reduction of extracellular PKM2-mediated claudin-1 expression, suggesting EGFR-PKC-claudin-1 as a signaling pathway in the extracellular PKM2-mediated tumorigenesis of colon cancer cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Claudina-1/metabolismo , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Células CACO-2 , Línea Celular Tumoral , Movimiento Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Progresión de la Enfermedad , Receptores ErbB/metabolismo , Células HCT116 , Humanos , Proteína Quinasa C/metabolismo , Interferencia de ARN , Transducción de Señal , Proteínas de Unión a Hormona Tiroide
7.
Metab Eng ; 57: 193-202, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786244

RESUMEN

Monophosphoryl lipid A (MPLA) species, including MPL (a trade name of GlaxoSmithKline) and GLA (a trade name of Immune Design, a subsidiary of Merck), are widely used as an adjuvant in vaccines, allergy drugs, and immunotherapy to boost the immune response. Even though MPLA is a derivative of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, bacterial strains producing MPLA have not been found in nature nor engineered. In fact, MPLA generation involves expensive and laborious procedures based on synthetic routes or chemical transformation of precursors isolated from Gram-negative bacteria. Here, we report the engineering of an Escherichia coli strain for in situ production and accumulation of MPLA. Furthermore, we establish a succinct method for purifying MPLA from the engineered E. coli strain. We show that the purified MPLA (named EcML) stimulates the mouse immune system to generate antigen-specific IgG antibodies similarly to commercially available MPLA, but with a dramatically reduced manufacturing time and cost. Our system, employing the first engineered E. coli strain that directly produces the adjuvant EcML, could transform the current standard of industrial MPLA production.


Asunto(s)
Adyuvantes Inmunológicos , Escherichia coli , Lípido A/análogos & derivados , Ingeniería Metabólica , Adyuvantes Inmunológicos/biosíntesis , Adyuvantes Inmunológicos/genética , Adyuvantes Inmunológicos/aislamiento & purificación , Adyuvantes Inmunológicos/farmacología , Animales , Formación de Anticuerpos/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Inmunoglobulina G/biosíntesis , Lípido A/biosíntesis , Lípido A/genética , Lípido A/aislamiento & purificación , Lípido A/farmacología , Ratones , Ratones Endogámicos BALB C
8.
J Adv Model Earth Syst ; 11(8): 2503-2522, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31762931

RESUMEN

The Tibetan Plateau is regarded as the Earth's Third Pole, which is the source region of several major rivers that impact more 20% the world population. This high-altitude region is reported to have been undergoing much greater rate of weather changes under global warming, but the existing reanalysis products are inadequate for depicting the state of the atmosphere, particularly with regard to the amount of precipitation and its diurnal cycle. An ensemble Kalman filter (EnKF) data assimilation system based on the limited-area Weather Research and Forecasting (WRF) model was evaluated for use in developing a regional reanalysis over the Tibetan Plateau and the surrounding regions. A 3-month prototype reanalysis over the summer months (June-August) of 2015 using WRF-EnKF at a 30-km grid spacing to assimilate nonradiance observations from the Global Telecommunications System was developed and evaluated against independent sounding and satellite observations in comparison to the ERA-Interim and fifth European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) global reanalysis. Results showed that both the posterior analysis and the subsequent 6- to 12-hr WRF forecasts of the prototype regional reanalysis compared favorably with independent sounding observations, satellite-based precipitation versus those from ERA-Interim and ERA5 during the same period. In particular, the prototype regional reanalysis had clear advantages over the global reanalyses of ERA-Interim and ERA5 in the analysis accuracy of atmospheric humidity, as well as in the subsequent downscale-simulated precipitation intensity, spatial distribution, diurnal evolution, and extreme occurrence.

9.
mBio ; 10(3)2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213552

RESUMEN

Although distinct lipid phosphatases are thought to be required for processing lipid A (component of the outer leaflet of the outer membrane), glycerophospholipid (component of the inner membrane and the inner leaflet of the outer membrane), and undecaprenyl pyrophosphate (C55-PP; precursors of peptidoglycan and O antigens of lipopolysaccharide) in Gram-negative bacteria, we report that the lipid A 1-phosphatases, LpxEs, functionally connect multiple layers of cell envelope biogenesis in Gram-negative bacteria. We found that Aquifex aeolicus LpxE structurally resembles YodM in Bacillus subtilis, a phosphatase for phosphatidylglycerol phosphate (PGP) with a weak in vitro activity on C55-PP, and rescues Escherichia coli deficient in PGP and C55-PP phosphatase activities; deletion of lpxE in Francisella novicida reduces the MIC value of bacitracin, indicating a significant contribution of LpxE to the native bacterial C55-PP phosphatase activity. Suppression of plasmid-borne lpxE in F. novicida deficient in chromosomally encoded C55-PP phosphatase activities results in cell enlargement, loss of O-antigen repeats of lipopolysaccharide, and ultimately cell death. These discoveries implicate LpxE as the first example of a multifunctional regulatory enzyme that orchestrates lipid A modification, O-antigen production, and peptidoglycan biogenesis to remodel multiple layers of the Gram-negative bacterial envelope.IMPORTANCE Dephosphorylation of the lipid A 1-phosphate by LpxE in Gram-negative bacteria plays important roles in antibiotic resistance, bacterial virulence, and modulation of the host immune system. Our results demonstrate that in addition to removing the 1-phosphate from lipid A, LpxEs also dephosphorylate undecaprenyl pyrophosphate, an important metabolite for the synthesis of the essential envelope components, peptidoglycan and O-antigen. Therefore, LpxEs participate in multiple layers of biogenesis of the Gram-negative bacterial envelope and increase antibiotic resistance. This discovery marks an important step toward understanding the regulation and biogenesis of the Gram-negative bacterial envelope.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/enzimología , Lípido A/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Bacterias Gramnegativas/genética , Lípido A/genética , Proteínas de la Membrana/genética , Antígenos O/genética , Antígenos O/metabolismo , Peptidoglicano/genética , Peptidoglicano/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Fosfatos de Poliisoprenilo/metabolismo , Homología de Secuencia de Aminoácido
10.
Cancer Cell ; 35(1): 111-124.e10, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30645970

RESUMEN

We report proteogenomic analysis of diffuse gastric cancers (GCs) in young populations. Phosphoproteome data elucidated signaling pathways associated with somatic mutations based on mutation-phosphorylation correlations. Moreover, correlations between mRNA and protein abundances provided potential oncogenes and tumor suppressors associated with patient survival. Furthermore, integrated clustering of mRNA, protein, phosphorylation, and N-glycosylation data identified four subtypes of diffuse GCs. Distinguishing these subtypes was possible by proteomic data. Four subtypes were associated with proliferation, immune response, metabolism, and invasion, respectively; and associations of the subtypes with immune- and invasion-related pathways were identified mainly by phosphorylation and N-glycosylation data. Therefore, our proteogenomic analysis provides additional information beyond genomic analyses, which can improve understanding of cancer biology and patient stratification in diffuse GCs.


Asunto(s)
Redes Reguladoras de Genes , Mutación , Proteogenómica/métodos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Edad de Inicio , Femenino , Glicosilación , Humanos , Masculino , Fosforilación , Mapas de Interacción de Proteínas , Análisis de Supervivencia , Secuenciación del Exoma/métodos
11.
Sci Rep ; 9(1): 826, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696842

RESUMEN

Lipopolysaccharides (LPS) are a major component of the outer membrane of Gram-negative bacteria and are pathogen-associated molecular patterns recognized by the TLR4/MD2 complex that induces an inflammatory response. Recently, the cytosolic receptors caspase-4/-5/-11 that bind LPS inside the cell and trigger inflammasome activation or pyroptosis, have been identified. Despite the important roles of caspase-4 in human immune responses, few studies have investigated its biochemical characteristics and interactions with LPS. Since caspase-4 (C258A) purified from an Escherichia coli host forms aggregates, monomeric proteins including full-length caspase-4, caspase-4 (C258A), and the CARD domain of caspase-4 have been purified from the insect cell system. Here, we report the overexpression and purification of monomeric caspase-4 (C258A) and CARD domain from E. coli and demonstrate that purified caspase-4 (C258A) and CARD domain bind large LPS micelles and disaggregate them to small complexes. As the molar ratio of caspase-4 to LPS increases, the size of the caspase-4/LPS complex decreases. Our results present a new function of caspase-4 and set the stage for structural and biochemical studies, and drug discovery targeting LPS/caspase-4 interactions by establishing a facile purification method to obtain large quantities of purified caspase-4 (C258A) and the CARD domain.


Asunto(s)
Dominio de Reclutamiento y Activación de Caspasas/fisiología , Caspasas Iniciadoras/metabolismo , Dominio Catalítico/fisiología , Lipopolisacáridos/metabolismo , Membrana Externa Bacteriana/metabolismo , Línea Celular , Escherichia coli/metabolismo , Células HEK293 , Humanos , Micelas , Unión Proteica
12.
Biochem Biophys Res Commun ; 504(1): 321-327, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30190133

RESUMEN

The human nucleoside-diphosphate linked moiety-X (NUDIX) hydrolases that utilize ADP-ribose and NADH/NAD+ are overexpressed in cancer cells, but their roles in hypoxia inducible factor-1α (HIF-1α) regulation have not yet been revealed. Here, we showed that these NUDIX hydrolases negatively regulated HIF-1α accumulation by modulating the Ca2+ dependent AMP-activated protein kinase (AMPK) signaling pathway. In specific, knockdown of NUDT9 resulted in accumulation of free ADP-ribose that triggered Ca2+ influx mediated by transient receptor potential cation channel subfamily M member 2 and subsequent activation of Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß). In addition, AMPK activation by CaMKKß was shown to enhance HIF-1α accumulation. Our findings provide insights into the action of NUDIX hydrolases as an additional, discrete modulator of HIF-1α accumulation.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pirofosfatasas/metabolismo , Adenosina Difosfato Ribosa/química , Adenilato Quinasa/metabolismo , Calcio/metabolismo , Células HCT116 , Células HeLa , Humanos , Isoformas de Proteínas , Transducción de Señal , Canales Catiónicos TRPM/metabolismo
13.
J Mol Biol ; 430(21): 4036-4048, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30092253

RESUMEN

During lipopolysaccharide biosynthesis in several pathogens, including Burkholderia and Yersinia, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) 3-hydroxylase, otherwise referred to as KdoO, converts Kdo to d-glycero-d-talo-oct-2-ulosonic acid (Ko) in an Fe(II)/α-ketoglutarate (α-KG)/O2-dependent manner. This conversion renders the bacterial outer membrane more stable and resistant to stresses such as an acidic environment. KdoO is a membrane-associated, deoxy-sugar hydroxylase that does not show significant sequence identity with any known enzymes, and its structural information has not been previously reported. Here, we report the biochemical and structural characterization of KdoO, Minf_1012 (KdoMI), from Methylacidiphilum infernorum V4. The de novo structure of KdoMI apoprotein indicates that KdoOMI consists of 13 α helices and 11 ß strands, and has the jelly roll fold containing a metal binding motif, HXDX111H. Structures of KdoMI bound to Co(II), KdoMI bound to α-KG and Fe(III), and KdoMI bound to succinate and Fe(III), in addition to mutagenesis analysis, indicate that His146, His260, and Asp148 play critical roles in Fe(II) binding, while Arg127, Arg162, Arg174, and Trp176 stabilize α-KG. It was also observed that His225 is adjacent to the active site and plays an important role in the catalysis of KdoOMI without affecting substrate binding, possibly being involved in oxygen activation. The crystal structure of KdoOMI is the first completed structure of a deoxy-sugar hydroxylase, and the data presented here have provided mechanistic insights into deoxy-sugar hydroxylase, KdoO, and lipopolysaccharide biosynthesis.


Asunto(s)
Dioxigenasas/química , Compuestos Ferrosos/química , Ácidos Cetoglutáricos/química , Oxigenasas de Función Mixta/química , Modelos Moleculares , Oxígeno/química , Secuencia de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Fenómenos Bioquímicos , Dioxigenasas/metabolismo , Compuestos Ferrosos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Estructura Molecular , Oxígeno/metabolismo
14.
Nucleic Acids Res ; 45(20): 11643-11657, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28977425

RESUMEN

Hypoxia increases both active and repressive histone methylation levels via decreased activity of histone demethylases. However, how such increases coordinately regulate induction or repression of hypoxia-responsive genes is largely unknown. Here, we profiled active and repressive histone tri-methylations (H3K4me3, H3K9me3, and H3K27me3) and analyzed gene expression profiles in human adipocyte-derived stem cells under hypoxia. We identified differentially expressed genes (DEGs) and differentially methylated genes (DMGs) by hypoxia and clustered the DEGs and DMGs into four major groups. We found that each group of DEGs was predominantly associated with alterations in only one type among the three histone tri-methylations. Moreover, the four groups of DEGs were associated with different TFs and localization patterns of their predominant types of H3K4me3, H3K9me3 and H3K27me3. Our results suggest that the association of altered gene expression with prominent single-type histone tri-methylations characterized by different localization patterns and with different sets of TFs contributes to regulation of particular sets of genes, which can serve as a model for coordinated epigenetic regulation of gene expression under hypoxia.


Asunto(s)
Hipoxia de la Célula/fisiología , Epigénesis Genética/genética , Código de Histonas/genética , Histonas/metabolismo , Células Madre/metabolismo , Tejido Adiposo/citología , Línea Celular , Expresión Génica/genética , Regulación de la Expresión Génica , Humanos , Metilación , Oxígeno/metabolismo , ARN Mensajero/genética , Células Madre/citología
15.
ACS Nano ; 11(9): 9352-9359, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28846390

RESUMEN

Reversible regulation of enzyme activity by chemical and physical stimuli is often achieved by incorporating stimuli-responsive domains in the enzyme of interest. However, this method is suitable for a limited number of enzymes with well-defined structural and conformational changes. In this study, we present a method to encapsulate enzymes in a DNA cage that could transform its conformation depending on the pH, allowing reversible control of the accessibility of the enzyme to the surrounding environment. This enabled us to regulate various properties of the enzyme, such as its resistance to protease-dependent degradation, binding affinity to the corresponding antibody, and most importantly, enzyme activity. Considering that the size and pH responsiveness of the DNA cage can be easily adjusted by the DNA length and sequence, our method provides a broad-impact platform for controlling enzyme functions without modifying the enzyme of interest.


Asunto(s)
ADN/química , Enzimas Inmovilizadas/química , Nanoestructuras/química , Ribonucleasa Pancreática/química , Animales , Bovinos , Activación Enzimática , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno
16.
PLoS One ; 12(8): e0183896, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837649

RESUMEN

Non-small-cell lung cancer (NSCLC) constitutes approximately 80% of all diagnosed lung cancers, and diagnostic markers detectable in the plasma/serum of NSCLC patients are greatly needed. In this study, we established a pipeline for the discovery of markers using 9 transcriptome datasets from publicly available databases and profiling of six lung cancer cell secretomes. Thirty-one out of 312 proteins that overlapped between two-fold differentially expressed genes and identified cell secretome proteins were detected in the pooled plasma of lung cancer patients. To quantify the candidates in the serum of NSCLC patients, multiple-reaction-monitoring mass spectrometry (MRM-MS) was performed for five candidate biomarkers. Finally, two potential biomarkers (BCHE and GPx3; AUC = 0.713 and 0.673, respectively) and one two-marker panel generated by logistic regression (BCHE/GPx3; AUC = 0.773) were identified. A validation test was performed by ELISA to evaluate the reproducibility of GPx3 and BCHE expression in an independent set of samples (BCHE and GPx3; AUC = 0.630 and 0.759, respectively, BCHE/GPx3 panel; AUC = 0.788). Collectively, these results demonstrate the feasibility of using our pipeline for marker discovery and our MRM-MS platform for verifying potential biomarkers of human diseases.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/sangre , Neoplasias Pulmonares/sangre , Espectrometría de Masas/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Cromatografía Liquida , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética
17.
Methods Mol Biol ; 1619: 103-117, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28674880

RESUMEN

While human plasma has a wealth of diagnostic information regarding the state of the human body in heath and disease, low molecular weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we describe a protocol for top-down proteomic analysis to identify and characterize the LMW proteoforms present in four types of human plasma samples without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. Each type of plasma sample was first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC software. As a result, a total of 442 LMW proteins and cleaved products, including those with posttranslational modifications (PTMs) and single amino acid variations (SAAVs), were identified with a threshold E-value of 1 × 10-4 from the four types of plasma samples.


Asunto(s)
Proteínas Sanguíneas , Proteoma , Proteómica , Espectrometría de Masas en Tándem , Proteínas Sanguíneas/química , Fraccionamiento Químico , Cromatografía Liquida , Peso Molecular , Procesamiento Proteico-Postraduccional , Proteómica/métodos
18.
Gastroenterology ; 153(2): 536-549.e26, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28522256

RESUMEN

BACKGROUND & AIMS: Early-onset gastric cancer, which develops in patients younger than most gastric cancers, is usually detected at advanced stages, has diffuse histologic features, and occurs more frequently in women. We investigated somatic genomic alterations associated with the unique characteristics of sporadic diffuse gastric cancers (DGCs) from younger patients. METHODS: We conducted whole exome and RNA sequence analyses of 80 resected DGC samples from patients 45 years old or younger in Korea. Patients with pathogenic germline mutations in CDH1, TP53, and ATM were excluded from the onset of this analysis, given our focus on somatic alterations. We used MutSig2CV to evaluate the significance of mutated genes. We recruited 29 additional early-onset Korean DGC samples and performed SNP6.0 array and targeted sequencing analyses of these 109 early-onset DGC samples (54.1% female, median age, 38 years). We compared the SNP6.0 array and targeted sequencing data of the 109 early-onset DGC samples with those from diffuse-type stomach tumor samples collected from 115 patients in Korea who were 46 years or older (late onset) at the time of diagnosis (controls; 29.6% female, median age, 67 years). We compared patient survival times among tumors from different subgroups and with different somatic mutations. We performed gene silencing of RHOA or CDH1 in DGC cells with small interfering RNAs for cell-based assays. RESULTS: We identified somatic mutations in the following genes in a significant number of early-onset DGCs: the cadherin 1 gene (CDH1), TP53, ARID1A, KRAS, PIK3CA, ERBB3, TGFBR1, FBXW7, RHOA, and MAP2K1. None of 109 early-onset DGC cases had pathogenic germline CDH1 mutations. A higher proportion of early-onset DGCs had mutations in CDH1 (42.2%) or TGFBR1 (7.3%) compared with control DGCs (17.4% and 0.9%, respectively) (P < .001 and P = .014 for CDH1 and TGFBR1, respectively). In contrast, a smaller proportion of early-onset DGCs contained mutations in RHOA (9.2%) than control DGCs (19.1%) (P = .033). Late-onset DGCs in The Cancer Genome Atlas also contained less frequent mutations in CDH1 and TGFBR1 and more frequent RHOA mutations, compared with early-onset DGCs. Early-onset DGCs from women contained significantly more mutations in CDH1 or TGFBR1 than early-onset DGCs from men. CDH1 alterations, but not RHOA mutations, were associated with shorter survival times in patients with early-onset DGCs (hazard ratio, 3.4; 95% confidence interval, 1.5-7.7). RHOA activity was reduced by an R5W substitution-the RHOA mutation most frequently detected in early-onset DGCs. Silencing of CDH1, but not RHOA, increased migratory activity of DGC cells. CONCLUSIONS: In an integrative genomic analysis, we found higher proportions of early-onset DGCs to contain somatic mutations in CDH1 or TGFBR1 compared with late-onset DGCs. However, a smaller proportion of early-onset DGCs contained somatic mutations in RHOA than late-onset DGCs. CDH1 alterations, but not RHOA mutations, were associated with shorter survival times of patients, which might account for the aggressive clinical course of early-onset gastric cancer. Female predominance in early-onset gastric cancer may be related to relatively high rates of somatic CDH1 and TGFBR1 mutations in this population.


Asunto(s)
Edad de Inicio , Cadherinas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Neoplasias Gástricas/genética , Proteína de Unión al GTP rhoA/genética , Adulto , Antígenos CD , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal , Humanos , Masculino , Persona de Mediana Edad , Receptor Tipo I de Factor de Crecimiento Transformador beta , República de Corea , Factores Sexuales , Adulto Joven
19.
Biochem Biophys Res Commun ; 486(2): 270-276, 2017 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-28288786

RESUMEN

The p21-activated kinases (Paks) interact with Rac/Cdc42 GTPases to regulate the actin cytoskeleton as well as various signaling pathways. Although activation of Paks in many human cancers is known to mediate cancer progression, the role of Pak proteins in hypoxia is poorly understood. In this study, we found that both Pak1 and Pak4 are highly expressed in HeLa cervical cancer cells, but only Pak4 knockdown attenuates expression of hypoxia-inducible factor-1α (HIF-1α) in hypoxia. We further discovered that Pak4 regulates HIF-1α translation via the Akt-mTOR-4E-BP1 pathway under hypoxic conditions. These results support a novel connection between HIF-1α and Pak4 in hypoxic cancer cells, and provide insights into mechanisms whereby tumors respond to and thrive under oxygen-deficient conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Quinasas p21 Activadas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular , Hipoxia de la Célula , Genes Reporteros , Células HCT116 , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Quinasas p21 Activadas/metabolismo
20.
FASEB J ; 31(4): 1516-1530, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28031321

RESUMEN

Chronic inflammation is known to be a key causative factor in tumor progression, but we do not yet fully understand the molecular mechanism through which inflammation leads to cancer. Here, we report that the dextran sulfate sodium (DSS)-induced mouse model of chronic colitis is associated with increases in the serum level of IL-1ß and the colonic epithelial expression of the cell-surface heparan sulfate proteoglycan, syndecan-2. We further show that IL-1ß stimulated the transcription of syndecan-2 via NF-κB-dependent FOXO3a activation in CCD841CoN normal colonic epithelial cells and early-stage HT29 colon cancer cells. Inflammatory hypoxia was observed in the colonic epithelia of mice with chronic colitis, suggesting that hypoxic stress is involved in the regulation of syndecan-2 expression. Consistently, experimental inflammatory hypoxia induced hypoxia inducible factor-1α-dependent FOXO3a expression and the p38 MAPK-mediated nuclear localization of FOXO3a. FOXO3a directly mediated syndecan-2 expression in both cell lines and the colonic epithelia of mice with DSS-induced colitis. Moreover, syndecan-2 expression was detected in azoxymethane/DSS-induced colon tumors. Together, these data demonstrate that inflammatory hypoxia up-regulates syndecan-2 via the IL-1ß-NF-κB-FOXO3a pathway. These findings provide new mechanistic insights into inflammatory hypoxia-mediated syndecan-2 expression to connect chronic inflammation and the development of colon cancer.-Choi, S., Chung, H., Hong, H., Kim, S. Y., Kim, S.-E., Seoh, J.-Y., Moon, C. M., Yang, E. G., Oh, E.-S. Inflammatory hypoxia induces syndecan-2 expression through IL-1ß-mediated FOXO3a activation in colonic epithelia.


Asunto(s)
Colitis Ulcerosa/metabolismo , Colon/metabolismo , Proteína Forkhead Box O3/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Oxígeno/metabolismo , Sindecano-2/genética , Animales , Hipoxia de la Célula , Línea Celular , Colon/citología , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Sindecano-2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...