Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 900, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082327

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. METHODS: IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/ß-catenin pathway. SKL2001, an activator of ß-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS: It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/ß-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS: Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/ß-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Enfermedades Mitocondriales , Humanos , Vía de Señalización Wnt , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Enfermedades Mitocondriales/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo
2.
Cell Death Discov ; 9(1): 338, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679322

RESUMEN

An essential protein regulatory system in cells is the ubiquitin-proteasome pathway. The substrate is modified by the ubiquitin ligase system (E1-E2-E3) in this pathway, which is a dynamic protein bidirectional modification regulation system. Deubiquitinating enzymes (DUBs) are tasked with specifically hydrolyzing ubiquitin molecules from ubiquitin-linked proteins or precursor proteins and inversely regulating protein degradation, which in turn affects protein function. The ubiquitin-specific peptidase 32 (USP32) protein level is associated with cell cycle progression, proliferation, migration, invasion, and other cellular biological processes. It is an important member of the ubiquitin-specific protease family. It is thought that USP32, a unique enzyme that controls the ubiquitin process, is closely linked to the onset and progression of many cancers, including small cell lung cancer, gastric cancer, breast cancer, epithelial ovarian cancer, glioblastoma, gastrointestinal stromal tumor, acute myeloid leukemia, and pancreatic adenocarcinoma. In this review, we focus on the multiple mechanisms of USP32 in various tumor types and show that USP32 controls the stability of many distinct proteins. Therefore, USP32 is a key and promising therapeutic target for tumor therapy, which could provide important new insights and avenues for antitumor drug development. The therapeutic importance of USP32 in cancer treatment remains to be further proven. In conclusion, there are many options for the future direction of USP32 research.

3.
Food Funct ; 14(13): 6157-6171, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37337786

RESUMEN

Previous studies have shown that peptides isolated from C-phycocyanin (C-PC) possess various functions including antioxidant and anticancer activities. However, there is little research on C-PC peptides applied for the neuroprotective effect against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) model. In this study, twelve novel peptides from C-PC were isolated, purified and identified, and the anti-PD effect of the synthesized peptides was evaluated in a zebrafish PD model. As a result, three of these peptides (MAAAHR, MPQPPAK, and MTAAAR) significantly reversed the loss of dopamine neurons and cerebral vessels, and reduced the locomotor impairment in PD zebrafish. In addition, three novel peptides could inhibit the MPTP-induced decrease of antioxidant enzymes (SOD, CAT, and GSH-Px) and increase the ROS and protein carbonylation content. In addition, they can also alleviate apoptosis of brain regions and acetylcholinesterase (AChE) activity in zebrafish. Further studies elucidated the potential molecular mechanism of peptides' anti-PD effects in the larvae. The results showed that C-PC peptides could modulate multiple genes associated with oxidative stress, autophagy and apoptosis signaling pathways, and thereby alleviate the occurrence of PD symptoms. Overall, our results highlight the neuroprotective effects of three novel peptides and provide valuable mechanistic insights and a promising drug target for the treatment of PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Pez Cebra/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Ficocianina/farmacología , Ficocianina/uso terapéutico , Antioxidantes/metabolismo , Acetilcolinesterasa , Péptidos/farmacología , Péptidos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
4.
Apoptosis ; 28(9-10): 1390-1405, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37253905

RESUMEN

Gastric cancer (GC) is the most common malignant tumor of digestive system. Bufalin extracted from Venenum Bufonis is one of the most effective anticancer monomers, which has been proved to play anticancer roles in a variety of cancers such as ovarian cancer, prostate cancer and neuroblastoma. However, there are few studies on bufalin in GC, and lack of clear targets. The effect of bufalin on the proliferation and migration of GC cells was detected by CCK-8, scratch wound healing assay, transwell assay and Western blotting. The potential direct interaction proteins of bufalin were screened by human proteome microarray containing 21,838 human proteins. The target protein was determined by bioinformatics, and the binding sites were predicted by molecular docking technique. Biological experiments in vitro and in vivo were conducted to verify the effect of bufalin directly interaction protein and the mechanism of bufalin targeting the protein to inhibit the development of GC. The results showed that bufalin inhibited the proliferation and migration of MKN-45 and HGC-27 GC cell lines in vitro. BFAR, a direct interaction protein of bufalin has several potential binding sites to bufalin. BFAR is highly expressed in GC and promotes the occurrence and metastasis of GC by activating PI3K/AKT/mTOR signal pathway in vitro and in vivo. Bufalin reversed the promoting effect of BFAR on the carcinogenesis and metastasis of GC by down-regulating the expression of BFAR. Our results show that bufalin targeting BFAR inhibits the occurrence and metastasis of GC through PI3K/AKT/mTOR signal pathway. These results provide a new basis for bufalin as a promising drug for the treatment of GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Masculino , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Simulación del Acoplamiento Molecular , Apoptosis , Serina-Treonina Quinasas TOR/genética , Transducción de Señal , Proteínas de la Membrana , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis
5.
Aging Dis ; 14(4): 1425-1440, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163424

RESUMEN

The senescence of mesenchymal stem cells (MSCs) impairs their regenerative capacity to maintain tissue homeostasis. Numerous studies are focusing on the interventions and mechanisms to attenuate the senescence of MSCs. C-phycocyanin (C-PC) is reported to have multiple functions such as antitumor, antioxidation, anti-inflammation and anti-aging roles, but there is little research about the effects of C-PC on the senescence of MSCs. Here we investigated the roles and mechanism of C-PC on MSCs senescence. In vitro results showed that C-PC could reduce senescence, enhance proliferation, promote the adipogenic and osteogenic differentiation in senescent MSCs induced by oxidative stress. In vivo D-Galactose (D-Gal) induced rats aging models showed C-PC also increased the viability and differentiation of intrinsic senescent bone marrow derived MSCs (BMSCs). Furthermore, C-PC also decreased the levels of oxidative stress markers ROS or MDA, elevated the SOD activity, and increased the anti-inflammatory factors. Proteomic chip analysis showed that C-PC interacted with ZDHHC5, and their interaction was verified by pull down assay. Overexpression of ZDHHC5 aggravated the senescence of MSCs and greatly lessened the beneficial effects of C-PC on senescence. In addition, we found ZDHHC5 regulated autophagy by altering LC3, Beclin1 and PI3K/AKT/mTOR pathway. In summary, our data indicated that C-PC ameliorates the senescence of MSCs through zinc finger Asp-His-His-Cys (DHHC) domain-containing protein 5 (ZDHHC5) mediated autophagy via PI3K/AKT/mTOR pathway. The present study uncovered the key role of autophagy in MSCs senescence and PI3K/AKT/mTOR pathway may be a potential target for anti-senescence studies of MSCs.

6.
Front Cell Dev Biol ; 11: 1141331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936694

RESUMEN

The annexin A (ANXA) protein family is a well-known tissue-specific multigene family that encodes Ca2+ phospholipid-binding proteins. A considerable amount of literature is available on the abnormal expression of ANXA proteins in various malignant diseases, including cancer, atherosclerosis and diabetes. As critical regulatory molecules in cancer, ANXA proteins play an essential role in cancer progression, proliferation, invasion and metastasis. Recent studies about their structure, biological properties and functions in different types of cancers are briefly summarised in this review. We further discuss the use of ANXA as new class of targets in the clinical diagnosis and treatment of cancer.

7.
Proteomics Clin Appl ; 17(1): e2200036, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316278

RESUMEN

Although several effective treatment modalities have been developed for cancers, the morbidity and mortality associated with cancer continues to increase every year. As one of the most exciting emerging technologies, protein microarrays represent a powerful tool in the field of cancer research because of their advantages such as high throughput, small sample usage, more flexibility, high sensitivity and direct readout of results. In this review, we focus on the research progress in four types of protein microarrays (proteome microarray, antibody microarray, lectin microarray and reversed protein array) with emphasis on their application in cancer research. Finally, we discuss the current challenges faced by protein microarrays and directions for future developments. We firmly believe that this novel systems biology research tool holds immense potential in cancer research and will become an irreplaceable tool in this field.


Asunto(s)
Neoplasias , Análisis por Matrices de Proteínas , Análisis por Matrices de Proteínas/métodos , Análisis por Micromatrices/métodos , Proteoma , Lectinas
8.
Environ Toxicol ; 37(6): 1275-1287, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35112789

RESUMEN

C-phycocyanin (C-PC) is an effective antioxidant and has an important value in medical research. Oxidative stress is considered to be one of the main underlying mechanisms of cell death, and reducing oxidative stress is one of the strategies to enhance germ cell viability. Herein, we investigated the protective effect and the mechanism of C-PC and apo-phycocyanin subunit on oxidative stress damage induced by H2 O2 in GC-1 spg cells. C-PC genes were cloned into the pGEX-4T-1 vectorand transformed into Escherichia coli BL21 to achieve the efficient expression of C-PC subunit. GC-1 spg cells were treated with 600 µM H2 O2 for 24 h to establish the oxidative stress damage model. Cell viability was detected by CCK-8. The degree of oxidative stress was detected by testing Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and glutathione (GSH) and Malondialdehyde (MDA) levels. Reactive oxygen species (ROS) was evaluated utilizingby 2', 7'-dichlorofluorescent-diacetate (DCFH-DA). Mitochondrial membrane potential was determined by JC-1. Cell necrosis rate was detected by Annexin V-FITC/PI. Expression of protein was detected by western blot. We found that C-PC and GST-CPC ß significantly inhibited H2 O2 -induced oxidative damage of GC-1 spg cells, improved the ability of antioxidation, reduced ROS overproduction, and mitochondrial membrane potential loss, and inhibited the RIP-1/RIP-3/ p-MLKL signaling pathway to reduce the necrosis rate. The results demonstrated that C-PC played a protective role against H2 O2 -induced cell damage, especially its ß subunit. This study provides a theoretical basis for C-PC as a potential protective agent of reproductive system.


Asunto(s)
Apoptosis , Ficocianina , Acetatos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Necrosis , Estrés Oxidativo , Fenoles , Ficocianina/metabolismo , Ficocianina/farmacología , Especies Reactivas de Oxígeno/metabolismo
9.
Food Funct ; 13(5): 2631-2646, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35167640

RESUMEN

C-phycocyanin from Spirulina platensis has pharmacological effects such as anti-oxidation, anti-cancer, anti-inflammatory and anti-atherosclerosis activities as well as liver and kidney protection. However, there is little research on C-phycocyanin applied in the field of reproductive medicine, and it is therefore the focus of the current study. In this study, a GC-1 spg cell model and male mouse reproductive injury model were constructed by TNF α + Smac mimetic + zVAD-fmk (TSZ) and cyclophosphamide (Cy), respectively. It has been proved that C-phycocyanin can increase cell viability and reduce cell death in GC-1 spg cells induced by TSZ. C-phycocyanin could protect the reproductive system of male mice from cyclophosphamide, improve spermatogenesis, sperm quality and fertility, increase the release of testosterone, stabilize the feedback regulation mechanism, and ensure the spermatogenic ability of mice. It could also improve the ability of anti-oxidation. In addition, C-phycocyanin could play a protective role by down-regulating RIPK1, RIPK3, and p-MLKL to inhibit the necroptotic signaling pathway. These results suggest that C-phycocyanin could protect GC-1 spg cells and the reproductive system of male mice from TSZ and cyclophosphamide, and the protective mechanism may be achieved by inhibiting the signal pathway of necroptosis. Therefore, C-phycocyanin could serve as a promising reproductive system protective agent. C-phycocyanin may enter public life as a health product in the future.


Asunto(s)
Genitales/efectos de los fármacos , Ficocianina/farmacología , Sustancias Protectoras/farmacología , Animales , Línea Celular/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Modelos Animales , Ficocianina/química , Sustancias Protectoras/química , Espermatozoides/efectos de los fármacos
10.
Front Pharmacol ; 12: 735446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675807

RESUMEN

In recent years, with the development of nanomaterials, the research of drug delivery systems has become a new field of cancer therapy. Compared with conventional antitumor drugs, drug delivery systems such as drug nanoparticles (NPs) are expected to have more advantages in antineoplastic effects, including easy preparation, high efficiency, low toxicity, especially active tumor-targeting ability. Drug delivery systems are usually composed of delivery carriers, antitumor drugs, and even target molecules. At present, there are few comprehensive reports on a summary of drug delivery systems applied for tumor therapy. This review introduces the preparation, characteristics, and applications of several common delivery carriers and expounds the antitumor mechanism of different antitumor drugs in delivery carriers in detail which provides a more theoretical basis for clinical application of personalized cancer nanomedicine in the future.

11.
Sci Rep ; 11(1): 11131, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045466

RESUMEN

High performance miniaturized electronic devices require enhanced, compact and reliable thermal management system. As an efficient compact space cooling technique, flow boiling in microchannels has recently gained wide acceptance. However, weak buoyancy effects and microgravity in avionics and numerous space systems operations hinder the performance of flow boiling microchannel thermal management system due to poor bubble departure capacity and unfavorable development of flow regimes. Here we report the flow boiling silicon nanowires (SiNWs) microchannels which can favorably regulate two-phase flow regimes by enhancing explosive boiling, minimizing bubble departure diameter, and smoothing flow regime transition. Extensive experimental investigations along with high speed visualizations are performed. The experiments are performed with the dielectric fluid HFE-7100 in a forced convection loop for wide range of heat and mass fluxes. High speed flow visualizations have been employed at up to 70 k frames per second (fps) to understand the boiling mechanism in terms of bubble dynamics, flow patterns, and flow regime developments for SiNWs microchannels. These studies show that SiNWs reduce intermittent flow regimes (slug/churn), improve rewetting and maintain thin liquid film at wall. Therefore, flow boiling in SiNW microchannels is promising to thermal management owing to its high heat transfer rate with low pressure drop and negligible microgravity sensitivity.

12.
Langmuir ; 36(51): 15536-15542, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33316157

RESUMEN

Controlling the movement of liquids/vapors on solid interfaces is of importance for numerous applications ranging from fluid processing to lab-on-chip and thermal management systems. In this study, a new mechanism is proposed to coordinate the two-phase transport during a boiling process in a highly on-demand fashion. A novel wicking nanofence was designed to confine liquids as an ordered, reconfigurable boundary layer that allows for significant enhancements in all aspects of two-phase transport performances. Experiments have been conducted to systematically investigate the effect of a nanofence-activated boundary layer on the flow boiling performance for mass velocity ranging from 113 to 389 kg/m2·s. Significant enhancements regarding the heat transfer coefficient (HTC) and critical heat flux (CHF) have been demonstrated. For example, a CHF value of 585 W/cm2 with an enhancement of about threefold is achieved compared to a plain-wall microchannel at a mass velocity of 389 kg/m2·s. The HTC enhancement is up to 58% as well at a mass velocity of 160 kg/m2·s. All these achievements are demonstrated without escalating the pressure drops.

13.
Front Pharmacol ; 11: 906, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636744

RESUMEN

In vitro studies had shown that C-Phycocyanin (C-PC) inhibited cervical cancer HeLa cells growth. We constructed C-PC/CMC-CD55sp nanospheres using C-PC, Carboxymethyl Chitosan (CMC), and CD55 ligand peptide (CD55sp) to allow for targeted antitumor effects against HeLa cells in vitro and in vivo. The characteristics of the nanospheres were determined using FTIR, electron microscopy, and laser particle size analysis. Flow cytometry, laser confocal microscopy and small animal imaging system showed the targeting of C-PC/CMC-CD55sp nanospheres on HeLa cells. Subsequently, the proliferation and apoptosis were analyzed by Cell Counting Kit-8 (CCK-8), flow cytometry, TUNEL assay and electron microscopy. The expression of the apoptosis-related protein was determined using western blot. The stainings of Hematoxylin and Eosin (HE) were employed to evaluate the cell condition of tumor tissue sections. The cytokines in the blood in tumor-bearing nude mice was determined using ELISA. These results showed that C-PC/CMC-CD55sp nanospheres were successfully constructed and targeted HeLa cells. The constructed nanospheres were more effective than C-PC alone in inhibiting the proliferation and inducing apoptosis in HeLa cells. We also found that C-PC/CMC-CD55sp nanospheres had a significant inhibitory effect on the expression of antiapoptotic protein Bcl-2 and a promotion on the transformation of caspase 3 to cleaved caspase 3. C-PC/CMC-CD55sp nanospheres played an important role in tumor suppression, reduced the expression TGF-ß, and increased IL-6 and TNF-α. This study demonstrates that the constructed new C-PC/CMC-CD55sp nanospheres exerted targeted antitumor effects in vivo and in vitro which provided a novel idea for application of C-PC, and provided experimental basis for comprehensive targeted treatment of tumors.

14.
Adv Mater ; 32(2): e1905117, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31709595

RESUMEN

Development of smaller, faster, and more powerful electronic devices requires effective cooling strategies to efficiently remove ever-greater heat. Phase-change heat transfer such as boiling and evaporation has been widely exploited in various water-energy industries owing to its efficient heat transfer mode. Despite extensive progress, it remains challenging to achieve the physical limit of flow boiling due to highly transitional and chaotic nature of multiphase flows as well as unfavorable boundary layer structures. Herein, a new strategy that promises to approach the physical limit of flow boiling heat transfer is reported. The flow boiling device with multiple channels is characterized with the design of micropinfin fences, which fundamentally transforms the boundary layer structures and imparts significantly higher heat transfer coefficient even at high heat flux conditions, in which boiling heat transfer is usually deteriorated due to the development of dryout starting from outlet regions and severe two-phase flow instabilities. Moreover, the approaching of physical limit is achieved without elevating pressure drop.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...