Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Environ Pollut ; : 124467, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950850

RESUMEN

The 31st FISU Summer World University Games (SWUG) was held in Chengdu, southwestern China, from July 22 to August 8, 2023. A series of control measures were carried out to ensure good air quality during the SWUG, providing an opportunity to investigate the atmospheric behaviors of light-absorbing aerosols under such a substantial disturbance caused by the control measures. To assess the impacts of emission controls on primary pollutants, a field campaign was conducted at a rural site in Chengdu to investigate the characterization of equivalent black carbon (eBC). The changes of eBC concentrations before, during, and after the SWUG were characterized. The sources of eBC were resolved, and the impacts of atmospheric processes on the absorption capacity were also investigated. During the SWUG, the eBC concentration decreased by 12.1 % and 25.3 % compared with those before and after the SWUG. A fossil fuel combustion (eBCff) and a biomass burning (eBCbb) originated eBC were resolved using the aethalometer model. Both eBCff and eBCbb decreased during the SWUG, indicating the effectiveness of control measures. After the SWUG, the influence of biomass burning emissions became more and more significant, and the contribution of brown carbon (BrC) to light absorption at 370-660 nm increased by 52, 19, 7, 6, and 17 % compared to those during the SWUG. As the biomass burning emitted aerosols aged, the absorption Ångström exponent and babs(BrC370nm) decreased gradually, which was mainly due to the photobleaching of the chromophores during the daytime. eBCff was mainly affected by strong wind, while high eBCbb concentration was mainly attributed to the gradual accumulation of biomass-burning emissions near the observation site. The results show the significant reduction of eBC with the implementation of the air pollution mitigation campaign, and provide insights on the impacts of atmospheric processes on BC optical properties during summertime.

2.
Sci Total Environ ; 929: 172487, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631623

RESUMEN

Severe air pollution tends to occur under stagnant weather conditions. This study focused on the occurrence and formation of PM2.5-bound polycyclic aromatic compounds (PACs) under stagnant weather conditions, in consideration of their adverse human health effect and ecological toxicity. The concentrations of PACs were higher under stagnant weather conditions than in other situations with averaged values of 46.0 ng/m3 versus 12.3-39.9 ng/m3 for total PACs. Secondary formation contributed to over half of the oxygenated and nitrated polycyclic aromatic compounds (OPAHs and NPAHs). Further analyses revealed different formation mechanisms for secondary OPAHs and NPAHs. Secondary production of OPAHs was sensitive to the variations of both temperature (T) and O3 concentration at T < 22 °C but sustained at a high level despite the fluctuation of temperature and O3 concentration at T > 22 °C. Elevated NO2 concentrations favored the formation of inorganic nitrogen-containing products over NPAHs under lower temperature and higher humidity. Stagnant weather events, accompanied by raised PAC levels occurred in all seasons, but their effects on secondary processes differed among seasons. The elevated temperature, lowered humidity, and increased NO2 level facilitated the secondary formation of OPAHs and/or NPAHs during the stagnant weather events in spring and summer. While under the temperature and humidity conditions in autumn and winter, increased NO2 levels during stagnant weather events promoted the production of secondary inorganic nitrogen-containing compounds over organic products. This study raised concern about the toxic organic pollutants in the atmosphere under stagnant weather conditions and revealed different formation mechanisms between secondary oxygenated and nitrated pollutants as well as among different seasons.

3.
J Environ Sci (China) ; 141: 215-224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408822

RESUMEN

The complex air pollution driven by both Ozone (O3) and fine particulate matter (PM2.5) significantly influences the air quality in the Sichuan Basin (SCB). Understanding the O3 formation during autumn and winter is necessary to understand the atmospheric oxidative capacity. Therefore, continuous in-site field observations were carried out during the late summer, early autumn and winter of 2020 in a rural area of Chongqing. The total volatile organic compounds (VOCs) concentration reported by a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were 13.66 ± 9.75 ppb, 5.50 ± 2.64 ppb, and 9.41 ± 5.11 ppb in late summer, early autumn and winter, respectively. The anthropogenic VOCs (AVOCs) and biogenic VOCs (BVOCs) were 8.48 ± 7.92 ppb and 5.18 ± 2.99 ppb in late summer, 3.31 ± 1.89 ppb and 2.19 ± 0.93 ppb in autumn, and 6.22 ± 3.99 ppb and 3.20 ± 1.27 ppb in winter. A zero-dimensional atmospheric box model was employed to investigate the sensitivity of O3-precursors by relative incremental reactivity (RIR). The RIR values of AVOCs, BVOCs, carbon monoxide (CO), and nitrogen oxides (NOx) were 0.31, 0.71, 0.09, and -0.36 for late summer, 0.24, 0.59, 0.22, and -0.38 for early autumn, and 0.30, 0.64, 0.33 and -0.70 for winter, and the results showed that the O3 formation of sampling area was in the VOC-limited region, and O3 was most sensitive to BVOCs (with highest RIR values, > 0.6). This study can be helpful in understanding O3 formation and interpreting the secondary formation of aerosols in the winter.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Ozono/química , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , China , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos
4.
Sci Total Environ ; 918: 170374, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307267

RESUMEN

Carbonaceous aerosols play a vital role in global climate patterns due to their potent light absorption capabilities. However, the light absorption enhancement effect (Eabs) of black carbon (BC) is still subject to great uncertainties due to factors such as the mixing state, coating material, and particle size distribution. In this study, fine particulate matter (PM2.5) samples were collected in Chengdu, a megacity in the Sichuan Basin, during the winter of 2020 and 2021. The chemical components of PM2.5 and the light absorption properties of BC were investigated. The results revealed that secondary inorganic aerosols and carbonaceous aerosols were the dominant components in PM2.5. Additionally, the aerosol filter filtration-dissolution (AFD) treatment could improve the accuracy of measuring elemental carbon (EC) through thermal/optical analysis. During winter in Chengdu, the absorption enhancement values of BC ranged between 1.56 and 2.27, depending on the absorption wavelength and the mixing state of BC and non-BC materials. The presence of internally mixed BC and non-BC materials significantly contributed to Eabs, accounting for an average of 68 % at 405 nm and 100 % at 635 nm. The thickness of the BC coating influenced Eabs, displaying an increasing-then-decreasing trend. This trend was primarily attributed to the hygroscopic growth and dehydration shrinkage of particulate matter. Nitrate, as the major component of BC coating, played a crucial role in the lensing effect and exhibited fast growth during variation in Eabs. By combining the results from PMF, we identified the secondary formation and vehicle emission as the primary contributors to Eabs. Consequently, this study can provide valuable insights into the optical parameters, which are essential for assessing the environmental quality, improving regional atmospheric conditions, and formulating effective air pollution control strategies.

5.
Environ Res ; 249: 118381, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331142

RESUMEN

Surface NO2 pollution can result in serious health consequences such as cardiovascular disease, asthma, and premature mortality. Due to the extensive spatial variation in surface NO2, the spatial resolution of a NO2 dataset has a significant impact on the exposure and health impact assessment. There is currently no long-term, high-resolution, and publicly available NO2 dataset for China. To fill this gap, this study generated a NO2 dataset named RBE-DS-NO2 for China during 2005-2020 at 1 km and daily resolution. We employed the robust back-extrapolation via a data augmentation approach (RBE-DA) to ensure the predictive accuracy in back-extrapolation before 2013, and utilized an improved spatial downscaling technique (DS) to refine the spatial resolution from 10 km to 1 km. Back-extrapolation validation based on 2005-2012 observations from sites in Taiwan province yielded an R2 of 0.72 and RMSE of 10.7 µg/m3, while cross-validation across China during 2013-2020 showed an R2 of 0.73 and RMSE of 9.6 µg/m3. RBE-DS-NO2 better captured spatiotemporal variation of surface NO2 in China compared to the existing publicly available datasets. Exposure assessment using RBE-DS-NO2 show that the population living in non-attainment areas (NO2 ≥ 30 µg/m3) grew from 376 million in 2005 to 612 million in 2012, then declined to 404 million by 2020. Unlike this national trend, exposure levels in several major cities (e.g., Shanghai and Chengdu) continued to increase during 2012-2020, driven by population growth and urban migration. Furthermore, this study revealed that low-resolution dataset (i.e., the 10 km intermediate dataset before the downscaling) overestimated NO2 levels, due to the limited specificity of the low-resolution model in simulating the relationship between NO2 and the predictor variables. Such limited specificity likely biased previous long-term NO2 exposure and health impact studies employing low-resolution datasets. The RBE-DS-NO2 dataset enables robust long-term assessments of NO2 exposure and health impacts in China.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Dióxido de Nitrógeno , China , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Humanos , Exposición a Riesgos Ambientales/análisis , Análisis Espacio-Temporal , Contaminación del Aire/análisis
6.
Huan Jing Ke Xue ; 45(1): 48-60, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38216457

RESUMEN

To investigate the characteristics, source apportionment, and potential source areas of carbonaceous aerosols in Chongqing during winter, PM2.5 samples were collected from January 2021 to February 2021 in the urban areas of Wanzhou (WZ), Yubei (YB), and Shuangqiao (SQ). The results showed that the average mass concentrations of PM2.5, OC, and EC in SQ were (72.6 ±33.3), (18.2 ±8.2), and (4.4 ±1.7) µg·m-3, respectively, higher than those in WZ[(67.2 ±30.3), (17.2 ±7.4), and (5.1 ±2.4) µg·m-3] and YB[(63.4 ±25.7), (15.4 ±6.3), and (4.2 ±1.9) µg·m-3]. Compared with that during the clear period, the concentration and fraction of EC in total carbon increased by 103.0% and 8.1%, respectively, in WZ compared to that in other areas during pollution period, whereas the OC/EC ratio was decreased significantly (-10.5%), indicating that the primary emission of carbonaceous aerosols increased significantly during the pollution period. The average mass concentrations of secondary organic carbon (SOC) in SQ and YB were (7.7 ±4.8) µg·m-3 and (6.9 ±2.8) µg·m-3 significantly higher, respectively, than that in WZ[(4.5 ±1.9) µg·m-3] during the campaign. This indicated that the secondary transformation had a greater influence on the carbonaceous aerosols in SQ and YB than that in WZ. Furthermore, in contrast to that in WZ, the ratios of SOC/OC were increased with the increase in PM2.5 concentrations, and significant correlations between SOC concentration and aerosol water content, NO2 concentration, and the value of NOR were observed in SQ and YB (P < 0.01), indicating that the increasing of carbonaceous aerosol concentrations might be mainly driven by the SOC with -NO2 groups produced by aqueous chemical reactions during winter in SQ and YB. The positive definite matrix factor (PMF) results in these urban areas showed that the contribution of biomass/coal combustion source in WZ (47.4%) was significantly higher than that in YB (34.2%) and SQ (38.1%), whereas the gasoline motor vehicle emission and secondary transformation impacts were more significant in YB. The results of the concentration weighted trajectory (CWT) showed that the potential sources of carbonaceous aerosols were mainly the local and northeastern parts of these urban areas (such as Changshou).

7.
Sci Total Environ ; 914: 169878, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190917

RESUMEN

Forty-six percent of the world's population resides in rural areas, the majority of whom belong to vulnerable groups. They mainly use cheap solid fuels for cooking and heating, which release a large amount of PM2.5 and cause adverse effects to human health. PM2.5 exhibits urban-rural differences in its health risk to the respiratory system. However, the majority of research on this issue has focused on respiratory diseases induced by atmospheric PM2.5 in urban areas, while rural areas have been ignored for a long time, especially the pathogenesis of respiratory diseases. This is not helpful for promoting environmental equity to aid vulnerable groups under PM2.5 pollution. Thus, this study focuses on rural atmospheric PM2.5 in terms of its chemical components, toxicological effects, respiratory disease types, and pathogenesis, represented by PM2.5 from rural areas in the Sichuan Basin, China (Rural SC-PM2.5). In this study, organic carbon is the most significant component of Rural SC-PM2.5. Rural SC-PM2.5 significantly induces cytotoxicity, oxidative stress, and inflammatory response. Based on multiomics, bioinformatics, and molecular biology, Rural SC-PM2.5 inhibits ribonucleotide reductase regulatory subunit M2 (RRM2) to disrupt the cell cycle, impede DNA replication, and ultimately inhibit lung cell proliferation. Furthermore, this study supplements and supports the epidemic investigation. Through an analysis of the transcriptome and human disease database, it is found that Rural SC-PM2.5 may mainly involve pulmonary hypertension, sarcoidosis, and interstitial lung diseases; in particular, congenital diseases may be ignored by epidemiological surveys in rural areas, including tracheoesophageal fistula, submucous cleft of the hard palate, and congenital hypoplasia of the lung. This study contributes to a greater scientific understanding of the health risks posed by rural PM2.5, elucidates the pathogenesis of respiratory diseases, clarifies the types of respiratory diseases, and promotes environmental equity.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Trastornos Respiratorios , Enfermedades Respiratorias , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Monitoreo del Ambiente , Contaminación del Aire/análisis , Trastornos Respiratorios/inducido químicamente , Enfermedades Respiratorias/inducido químicamente , Enfermedades Respiratorias/epidemiología , Población Rural , China/epidemiología
8.
J Environ Sci (China) ; 138: 10-18, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135378

RESUMEN

The ozone (O3) pollution in China drew lots of attention in recent years, and the Sichuan Basin (SCB) was one of the regions confronting worsening O3 pollution problem. Many previous studies have shown that regional transport is an important contributor to O3 pollution. However, very few features of the O3 profile during transport have been reported, especially in the border regions between different administrative divisions. In this study, we conducted tethered balloon soundings in SCB during the summer of 2020 and captured a nocturnal O3 transport event during the campaign. Vertically, the O3 transport occurred in the bottom of the residual layer, between 200 and 500 m above ground level. Horizontally, the transport pathway was directed from southeast to northwest based on the analysis of the wind field and air mass trajectories. The effect of transport in the residual layer on the surface O3 concentration was related to the spatial distribution of O3. For cities with high O3 concentrations in the upwind region, the transport process would bring clean air masses and abate pollution. For downwind lightly polluted cities, the transport process would slow down the decreasing or even increase the surface O3 concentration during the night. We provided observational facts on the profile features of a transboundary O3 transport event between two provincial administrative divisions, which implicated the importance of joint prevention and control measures. However, the sounding parameters were limited and the quantitative analysis was preliminary, more integrated, and thorough studies of this topic were called for in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Contaminación del Aire/análisis , Estaciones del Año , China
9.
J Environ Sci (China) ; 138: 121-131, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135381

RESUMEN

The chemical composition of acid rain and its impact on lake water chemistry in Chongqing, China, from 2000 to 2020 were studied in this study. The regional acid rain intensity is affected jointly by the acid gas emissions and the neutralization of alkaline substances. The pH of precipitation experienced three stages of fluctuating decline, continuous improvement, and a slight correction. Precipitation pH showed inflection points in 2010, mainly due to the total control actions of SO2 and NOx implemented in 2011. The total ion concentrations in rural areas and urban areas were 489.08 µeq/L and 618.57 µeq/L, respectively. The top four ions were SO42-, Ca2+, NH4+ and NO3-, which accounted for more than 90% of the total ion concentration, indicating the anthropogenic effects. Before 2010, SO42- fluctuated greatly while NO3- continued to rise; however, after 2010, both SO42- and NO3- began to decline rapidly, with the rates of -12.03 µeq/(L·year) and -4.11 µeq/(L·year). Because the decline rate of SO42- was 2.91 times that of NO3-, the regional acid rain has changed from sulfuric acid rain to mixed sulfuric and nitric acid rain. The lake water is weakly acidic, with an average pH of 5.86, and the acidification frequency is 30.00%. Acidification of lake water is jointly affected by acid deposition and acid neutralization capacity of lake water. Acid deposition has a profound impact on water acidification, and nitrogen (N) deposition, especially reduced N deposition, should be the focus of future research.


Asunto(s)
Lluvia Ácida , Lluvia Ácida/análisis , Lagos , Concentración de Iones de Hidrógeno , Iones , China , Agua , Monitoreo del Ambiente
10.
Environ Pollut ; 338: 122622, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37783418

RESUMEN

Terrain effect is challenging for understanding atmospheric environment changes under complex topography. This study targets the Sichuan Basin (SCB), a deep basin isolated by plateaus and mountains in Southwest China, by employing WRF-Chem with integrated process rates (IPR) analysis to characterize the terrain-driven seasonal variations of tropospheric ozone (O3) with atmospheric physical and chemical processes. Results show that the basin terrain exerts reversed impacts on regional air quality changes by aggravating summertime and alleviating wintertime near-surface O3 with the relative contributions oscillating seasonally between -40% and 40% in SCB. Similarly, a seasonal shift of vertical O3 structures is dominated by summertime positive and wintertime negative changes in the lower troposphere induced by basin terrain. The key contributions of atmospheric process to near-surface O3 are identified with vertical and horizontal transport, which is dominated by basin terrain with intensifying seasonal and diurnal variations. With the existence of basin, the daytime O3 productions at the near-surface layer are elevated in months of warm seasons (April and July) but inhibited in the cold seasons (October and January), presenting a seasonal transition of primary factor from meteorology to aerosol-radiation forcing on photochemical reactions. Driven by plateau-basin thermodynamic forcing, horizontal O3 transport between the SCB and eastern TP is enhanced by mountain-plains solenoid (MPS), and even nocturnal O3-rich layers contribute to the impacts of vertical exchange on near-surface O3 levels. The terrain effects of deep basin under the interaction of Asian monsoons and westerlies could jointly change atmospheric physical and chemical processes to construct the seasonal and diurnal O3 evolution patterns over the SCB region.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Estaciones del Año , Ozono/análisis , Contaminantes Atmosféricos/análisis , Clima , Contaminación del Aire/análisis , China , Monitoreo del Ambiente
11.
Sci Total Environ ; 904: 166693, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657553

RESUMEN

Remote sensing data from the Ozone Monitoring Instrument (OMI) and the TROPOspheric Monitoring Instrument (TROPOMI) play important roles in estimating surface nitrogen dioxide (NO2), but few studies have compared their differences for application in surface NO2 reconstruction. This study aims to explore the effectiveness of incorporating the tropospheric NO2 vertical column density (VCD) from OMI and TROPOMI (hereafter referred to as OMI and TROPOMI, respectively, for conciseness) for deriving surface NO2 and to apply the resulting data to revisit the spatiotemporal variations in surface NO2 for Beijing over the 2005-2020 period during which there were significant reductions in nitrogen oxide emissions. In the OMI versus TROPOMI performance comparison, the cross-validation R2 values were 0.73 and 0.72, respectively, at 1 km resolution and 0.69 for both at 100 m resolution. The comparisons between satellite data sources indicate that even though TROPOMI has a finer resolution it does not improve upon OMI for deriving surface NO2 at 1 km resolution, especially for analyzing long-term trends. In light of the comparison results, we used a hybrid approach based on machine learning to derive the spatiotemporal distribution of surface NO2 during 2005-2020 based on OMI. We had novel, independent passive sampling data collected weekly from July to September of 2008 for hindcasting validation and found a spatiotemporal R2 of 0.46 (RMSE = 7.0 ppb). Regarding the long-term trend of surface NO2, the level in 2008 was obviously lower than that in 2007 and 2009, as expected, which was attributed to pollution restrictions during the Olympic Games. The NO2 level started to steadily decline from 2015 and fell below 2008's level after 2017. Based on OMI, a long-term and fine-resolution surface NO2 dataset was developed for Beijing to support future environmental management questions and epidemiological research.

12.
Sci Total Environ ; 903: 166605, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640078

RESUMEN

Nitrous acid (HONO) is an established precursor of hydroxyl (OH) radical and has significant impacts on the formation of PM2.5 and O3. Despite extensive research on HONO observation in recent years, knowledge regarding its sources and sinks in urban areas remains inadequate. In this study, we monitored the atmospheric concentrations of HONO and related pollutants, including gaseous nitric acid and particulate nitrate, simultaneously at a supersite in downtown Chengdu, a megacity in southwestern China during spring, when was chosen due to its tolerance for both PM2.5 and O3 pollution. Furthermore, we employed the random forest model to fill the missing data of HONO, which exhibited good predictive performance (R2 = 0.96, RMSE = 0.36 ppbv). During this campaign, the average mixing ratio of HONO was measured to be 1.0 ± 0.7 ppbv. Notably, during periods of high O3 and PM2.5 concentrations, the mixing ratio of HONO was >50 % higher compared to the clean period. We developed a comprehensive parameterization scheme for the HONO budget, and it performed well in simulating diurnal variations of HONO. Based on the HONO budget analysis, we identified different mechanisms that dominate HONO formation at different times of the day. Vehicle emissions and NO2 heterogeneous conversions were found to be the primary sources of HONO during nighttime (21.0 %, 30.2 %, respectively, from 18:00 to 7:00 the next day). In the morning (7:00-12:00), NO2 heterogeneous conversions and the reaction of NO with OH became the main sources (35.0 %, 32.2 %, respectively). However, in the afternoon (12:00-18:00), the heterogeneous photolysis of HNO3 on PM2.5 was identified as the most substantial source of HONO (contributing 52.5 %). This study highlights the significant variations in primary HONO sources throughout the day.

13.
Sci Total Environ ; 901: 166259, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37595915

RESUMEN

Volatile organic compounds (VOCs) are significant precursors to photochemical pollution. However, reactive VOC species are easily oxidized during transportation, resulting in a systematic underestimate of the measured concentrations. To address this, we applied an improved calculation method to correct the measured VOC concentrations into photochemical initial concentrations (PICs) in Chengdu, a megacity in the Sichuan Basin, China, which is highly vulnerable to complex pollution. In this study, 56 VOC species on the Photochemical Assessment Monitor Station (PAMS) target list were quantitatively monitored throughout all four seasons. Comparing to directly measured values, photochemically initialized total mixing ratios of VOCs increased by 18.6 % in general. The photochemical loss percentages of alkenes and aromatics were prominent in summer (68.6 %, 28.7 %) and spring (65.9 %, 24.7 %), respectively. Furthermore, we examined contributions of VOCs to atmospheric oxidation capacity (AOC) depending on PICs and found that maximum daily total AOC showed a surge in spring and summer. Besides hydroxyl radicals, daytime O3 in spring and late-afternoon nitrate radicals in summer were essential for AOC with PICs. As expected, alkenes and aromatics dominated PIC-based ozone formation potentials (OFPs). Furthermore, contribution of alkenes to secondary organic aerosol formation potentials reached 15.5 % and 7.6 % in spring and summer, respectively. Using positive matrix factorization model, we identified five VOC sources including vehicular exhaust, industrial emissions, solvent usage, biogenic sources, and liquefied petroleum gas/natural gas use. Based on PICs, biogenic sources were significantly underestimated in spring and summer. Meanwhile, m,p-xylene from solvent usage and isoprene from biogenic sources were the primary contributors to OFPs. Consequently, these results emphasize the significance of photochemically oxidized VOC concentrations, especially for reactive species in typical seasons.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37048010

RESUMEN

Air pollutants suspended in the atmosphere have a large impact on air quality, climate, and human health. As one of the important populated and industrialized regions in China, the Sichuan Basin (SCB) has confronted severe air pollution in recent years. Previous studies have shown that regional transport played a significant role in the formation of regional pollution in the SCB, particularly in the southern basin. Using Yibin and Zigong as representative receptor cities, we further identified the transport channels affecting the southern basin by conducting gridded dispersion simulations. A total of seven channels were identified, including three for cyclonic transport, three through the mountainous areas between the Longquan Mountain and the Huaying Mountain, and one along the Yangtze River. Varying seasonal distributions of their occurrence frequencies were observed. Furthermore, observational evidence for several universal channels was presented during a typical transport case. The transport pathways identified in this study can guide the planning of regional distribution of emission sources and the measures for regional joint prevention and control of air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente , Contaminación del Aire/análisis , China , Ciudades , Estaciones del Año
15.
Sci Total Environ ; 880: 163274, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37019233

RESUMEN

Maternal PM2.5 exposure has been identified as a potential risk factor for preterm birth, yet the inconsistent findings on the susceptible exposure windows may be partially due to the influence of gaseous pollutants. This study aims to examine the association between PM2.5 exposure and preterm birth during different susceptible exposure windows after adjusting for exposure to gaseous pollutants. We collected 2,294,188 records of singleton live births from 30 provinces of China from 2013 to 2019, and the gridded daily concentrations of air pollutants (including PM2.5, O3, NO2, SO2, and CO) were derived by using machine learning models for assessing individual exposure. We employed logistic regression to develop single-pollutant models (including PM2.5 only) and co-pollutant models (including PM2.5 and a gaseous pollutant) to estimate the odds ratio for preterm birth and its subtypes, with adjustment for maternal age, neonatal sex, parity, meteorological conditions, and other potential confounders. In the single-pollutant models, PM2.5 exposure in each trimester was significantly associated with preterm birth, and the third trimester exposure showed a stronger association with very preterm birth than that with moderate to late preterm birth. The co-pollutant models revealed that preterm birth might be significantly associated only with maternal exposure to PM2.5 in the third trimester, and not with exposure in the first or second trimester. The observed significant associations between preterm birth and maternal PM2.5 exposure in the first and second trimesters in single-pollutant models might primarily be influenced by exposure to gaseous pollutants. Our study provides evidence that the third trimester may be the susceptible window for maternal PM2.5 exposure and preterm birth. The association between PM2.5 exposure and preterm birth could be influenced by gaseous pollutants, which should be taken into consideration when evaluating the impact of PM2.5 exposure on maternal and fetal health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nacimiento Prematuro , Embarazo , Femenino , Recién Nacido , Humanos , Contaminación del Aire/análisis , Nacimiento Prematuro/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Tercer Trimestre del Embarazo , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición Materna , China/epidemiología , Gases
16.
Sci Total Environ ; 879: 163022, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966844

RESUMEN

PM2.5 seriously endangers human health, and its mutagenicity is considered an important pathogenic mechanism. However, the mutagenicity of PM2.5 is mainly determined by traditional bioassays, which are limited in the large-scale identification of mutation sites. Single nucleoside polymorphisms (SNPs) can be used for the large-scale analysis of DNA mutation sites but have not yet been used on the mutagenicity of PM2.5. The Chengdu-Chongqing Economic Circle is one of China's four major economic circles and five major urban agglomerations, and the relationship between the mutagenicity of PM2.5 and ethnic susceptibility in this circle remains unclear. In this study, the representative samples are PM2.5 from Chengdu in summer (CDSUM), Chengdu in winter (CDWIN), Chongqing in summer (CQSUM) and Chongqing in winter (CQWIN) respectively. PM2.5 from CDWIN, CDSUM and CQSUM induce the highest levels of mutation in the regions of exon/5'Utr, upstream/splice site and downstream/3'Utr respectively. PM2.5 from CQWIN, CDWIN and CDSUM induce the highest ratio of missense, nonsense and synonymous mutation respectively. PM2.5 from CQWIN and CDWIN induce the highest transition and transversion mutations respectively. The ability of PM2.5 from the four groups to induce disruptive mutation effects is similar. For ethnic susceptibility, PM2.5 in this economic circle is more likely to induce DNA mutation in Chinese Dai from Xishuangbanna among Chinese ethnic groups. PM2.5 from CDSUM, CDWIN, CQSUM and CQWIN may particularly tend to induce Southern Han Chinese, Dai in Xishuangbanna, Dai in Xishuangbanna and Southern Han Chinese respectively. These findings may assist in the development of a new method for analyzing the mutagenicity of PM2.5. Moreover, this study not only promotes attention to ethnic susceptibility to PM2.5, but also introduces public protection policies for the susceptible population.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Contaminación del Aire/análisis , Mutágenos/toxicidad , Mutágenos/análisis , Monitoreo del Ambiente/métodos , China , Ciudades
17.
Environ Pollut ; 323: 121309, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822310

RESUMEN

In recent years, the annual mean concentration of PM2.5 has decreased in Chengdu, China; however, atmospheric visibility has not improved accordingly. Low-visibility events occurred even when the PM2.5 mass concentrations were below the national ambient air quality secondary standard (daily mean concentration, 75 µg/m3). In this study, the non-linear relationship between PM2.5 and visibility was analyzed under different NO3- mass fractions in PM2.5 based on 2-year field observation data. The results indicated that NO3- formation contributed to particulate pollution events and reduced atmospheric visibility. Multiple linear regression was used to propose a localized reconstruction equation for the light-scattering coefficient. According to the maximum likelihood estimation method and log-transformed residuals, the mass scattering coefficients (MSEs) of organic matter (OM), NH4NO3, and (NH4)2SO4 in Chengdu were 7.42, 3.83, and 3.80, respectively. OM and NH4NO3 contributed to more than 50% of the light-extinction coefficient (bext). NH4NO3 was the main pollutant causing the substantial increase in bext. Chengdu has a high relative humidity (annual mean 70%), and under such conditions, the contribution of NH4NO3 to bext was considerably enhanced through hygroscopic growth and heterogeneous reactions. This study estimated the localized MSEs of OM, NH4NO3, and (NH4)2SO4 in Chengdu and emphasized that effective control measures to reduce nitrate and its precursors could simultaneously ameliorate air quality and visibility in humid regions with poor atmospheric visibility.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Nitratos/análisis , Modelos Lineales , Monitoreo del Ambiente , Estaciones del Año , Contaminación del Aire/análisis , China , Aerosoles/análisis
18.
J Environ Sci (China) ; 126: 708-721, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503796

RESUMEN

Nowadays, the fine particle pollution is still severe in some megacities of China, especially in the Sichuan Basin, southwestern China. In order to understand the causes, sources, and impacts of fine particles, we collected PM2.5 samples and analyzed their chemical composition in typical months from July 2018 to May 2019 at an urban and a suburban (background) site of Chengdu, a megacity in this region. The daily average concentrations of PM2.5 ranged from 5.6-102.3 µg/m3 and 4.3-110.4 µg/m3 at each site. Secondary inorganics and organic matters were the major components in PM2.5 at both sites. The proportion of nitrate in PM2.5 has exceeded sulfate and become the primary inorganic component. SO2 was easier to transform into sulfate in urban areas because of Mn-catalytic heterogeneous reactions. In contrast, NO2 was easily converted in suburbs with high aerosol water content. Furthermore, organic carbon in urban was much greater than that in rural, other than elemental carbon. Element Cr and As were the key cancer risk drivers. The main sources of PM2.5 in urban and suburban areas were all secondary aerosols (42.9%, 32.1%), combustion (16.0%, 25.2%) and vehicle emission (15.2%, 19.2%). From clean period to pollution period, the contributions from combustion and secondary aerosols increased markedly. In addition to tightening vehicle controls, urban areas need to restrict emissions from steel smelters, and suburbs need to minimize coal and biomass combustion in autumn and winter.


Asunto(s)
Carbón Mineral , Contaminación Ambiental , China , Sulfatos , Óxidos de Azufre , Carbono
19.
J Environ Sci (China) ; 125: 761-773, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375958

RESUMEN

To study the emission characteristics of typical construction machinery in Chengdu, 12 construction machinery (excavators, bulldozers, loaders, and forklifts) under idling mode, moving mode, and working mode, were tested using a portable emission measurement system (PEMS). Under three operating modes, the typical construction machinery in the working mode was higher in the fuel-based average emission factors of PM2.5 and NOx, while the fuel-based average emission factors of HC and CO were higher in idling mode. Integrated the results of investigation on ownership and activity levels of construction machinery, an exhaust emission inventory of typical construction machinery of Chengdu in 2018 was established according to the recommendation method. The annual emission of PM2.5, NOx, HC, and CO were 1.67 × 106, 1.61 × 108, 3.83 × 106, and 1.26 × 107 kg, respectively, and the excavator contributed the maximum emissions, accounting for an average proportion of 43.95%. The emission of construction machinery in Chengdu exhibited a clear monthly trend, with the highest from April to October and the lowest from November to March. In addition, the exhaust emissions presented an obvious spot-like characteristics, and the high-value areas were mainly concentrated in the surrounding suburban counties such as Shuangliu Wenjiang etc. To reduce pollution from construction machinery and improve the quality of the atmospheric environment, more effective measures on housing construction and municipal construction should be taken in those districts in Chengdu.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Emisiones de Vehículos/análisis , China , Material Particulado
20.
Environ Pollut ; 312: 119966, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985435

RESUMEN

Carbonaceous aerosols pose significant climatic impact, however, their sources and respective contribution to light absorption vary and remain poorly understood. In this work, filter-based PM2.5 samples were collected in winter of 2021 at three urban sites in Yibin, a fast-growing city in the south of Sichuan Basin, China. The composition characteristics of PM2.5, light absorption and source of carbonaceous aerosol were analyzed. The city-wide average concentration of PM2.5 was 87.4 ± 31.0 µg/m3 in winter. Carbonaceous aerosol was the most abundant species, accounting for 42.5% of the total PM2.5. Source apportionment results showed that vehicular emission was the main source of PM2.5 during winter, contributing 34.6% to PM2.5. The light absorption of black carbon (BC) and brown carbon (BrC) were derived from a simplified two-component model. We apportioned the light absorption of carbonaceous aerosols to BC and BrC using the Least Squares Linear Regression with optimal angstrom absorption exponent of BC (AAEBC). The average absorption of BC and BrC at 405 nm were 51.6 ± 21.5 Mm-1 and 17.7 ± 8.0 Mm-1, respectively, with mean AAEBC = 0.82 ± 0.02. The contribution of BrC to the absorption of carbonaceous reached 26.1% at 405 nm. Based on the PM2.5 source apportionment and the mass absorption cross-section (MAC) value of BrC at 405 nm, vehicle emission was found to be the dominant source of BrC in winter, contributing up to 56.4%. Therefore, vehicle emissions mitigation should be the primary and an effective way to improve atmospheric visibility in this fast-developing city.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Estaciones del Año , Hollín/análisis , Emisiones de Vehículos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...