Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2301602, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385824

RESUMEN

Developing efficient electrocatalysts is significant for the commercial application of electrocatalytic water splitting. 2D materials have presented great prospects in electrocatalysis for their high surface-to-volume ratio and tunable electronic properties. Particularly, MXene emerges as one of the most promising candidates for electrocatalysts, exhibiting unique advantages of hydrophilicity, outstanding conductivity, and exceptional stability. However, it suffers from lacking catalytic active sites, poor oxidation resistance, and easy stacking, leading to a significant suppression of the catalytic performance. Combining MXene with other 2D materials is an effective way to tackle the aforementioned drawbacks. In this review, the focus is on the accurate synthesis of 2D/2D MXene-based catalysts toward electrocatalytic water splitting. First, the mechanisms of electrocatalytic water splitting and the relative properties and preparation methods of MXenes are introduced to offer the basis for accurate synthesis of 2D/2D MXene-based catalysts. Then, the accurate synthesis methods for various categories of 2D/2D MXene-based catalysts, such as wet-chemical, phase-transformation, electrodeposition, etc., are systematically elaborated. Furthermore, in-depth investigations are conducted into the internal interactions and structure-performance relationship of 2D/2D MXene-based catalysts. Finally, the current challenges and future opportunities are proposed for the development of 2D/2D MXene-based catalysts, aiming to enlighten these promising nanomaterials for electrocatalytic water splitting.

2.
Angew Chem Int Ed Engl ; 62(39): e202306640, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37312604

RESUMEN

Benzylamine electrooxidation reaction (BAOR) is a promising route to produce value-added, easy-separated benzonitrile, and effectively hoist H2 production. However, achieving excellent performance in low alkaline medium is a huge challenge. The performance is intimately correlated with effective coupling of HER and BAOR, which can be achieved by manipulating the d-electron structure of catalyst to regulate the active species from water. Herein, we constructed a biphasic Mo0.8 Ni0.2 N-Ni3 N heterojunction for enhanced bifunctional performance toward HER coupled with BAOR by customizing the d-band centers. Experimental and theoretical calculations indicate that charge transfer in the heterojunction causes the upshift of the d-band centers, which one side facilitates to decrease water activation energy and optimize H* adsorption on Mo0.8 Ni0.2 N for promoting HER activity, the other side favors to more easily produce and adsorb OH* from water for forming NiOOH on Ni3 N and optimizing adsorption energy of benzylamine, thus catalyzing BAOR effectively. Accordingly, it shows an industrial current density of 220 mA cm-2 at 1.59 V and high Faradaic efficiencies (>99 %) for H2 production and converting benzylamine to benzonitrile in 0.1 M KOH/0.5 M Na2 SO4 . This work guides the design of excellent bifunctional electrocatalysts for the scalable production of green hydrogen and value-added products.

3.
Nat Commun ; 13(1): 3125, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668075

RESUMEN

Paired electroreduction and electrooxidation of organics with water as a feedstock to produce value-added chemicals is meaningful. A comprehensive understanding of reaction mechanism is critical for the catalyst design and relative area development. Here, we have systematically studied the mechanism of the paired electroreduction and electrooxidation of organics on Fe-Mo-based phosphide heterojunctions. It is shown that active H* species for organic electroreduction originate from water. As for organic electrooxidation, among various oxygen species (OH*, OOH*, and O*), OH* free radicals derived from the first step of water dissociation are identified as active species. Furthermore, explicit reaction pathways and their paired advantages are proposed based on theoretical calculations. The paired electrolyzer powered by a solar cell shows a low voltage of 1.594 V at 100 mA cm-2, faradaic efficiency of ≥99%, and remarkable cycle stability. This work provides a guide for sustainable synthesis of various value-added chemicals via paired electrocatalysis.

4.
Angew Chem Int Ed Engl ; 61(12): e202116233, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-34984764

RESUMEN

A proton exchange membrane water electrolyzer (PEMWE) in acidic medium is a hopeful scenario for hydrogen production using renewable energy, but the grand challenge lies in substituting noble-metal catalysts. Herein, a robust electrocatalyst of V-CoP2 porous nanowires arranged on a carbon cloth is successfully fabricated by incorporating vanadium into the CoP2 lattice. Structural characterizations and theoretical analysis indicate that lattice expansion of CoP2 caused by V incorporation results in the upshift of the d-band center, which is conducive to hydrogen adsorption for boosting the hydrogen evolution reaction (HER). Besides, V promotes surface reconstruction to generate a thicker Co3 O4 layer with an oxygen vacancy that enhances acid-corrosion resistance and optimizes the adsorption of water and oxygen-containing species, thus improving activity and stability toward the oxygen evolution reaction (OER). Accordingly, it presents a superior acidic overall water splitting activity (1.47 V@10 mA cm-2 ) to Pt-C/CC||RuO2 /CC (1.59 V@10 mA cm-2 ), and remarkable stability. This work proposes a new route to design efficient non-noble metal electrocatalysts for PEMWE.

5.
Adv Mater ; 32(17): e2000455, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32173914

RESUMEN

Simultaneous highly efficient production of hydrogen and conversion of biomass into value-added products is meaningful but challenging. Herein, a porous nanospindle composed of carbon-encapsulated MoO2 -FeP heterojunction (MoO2 -FeP@C) is proposed as a robust bifunctional electrocatalyst for hydrogen evolution reaction (HER) and biomass electrooxidation reaction (BEOR). X-ray photoelectron spectroscopy analysis and theoretical calculations confirm the electron transfer from MoO2 to FeP at the interfaces, where electron accumulation on FeP favors the optimization of H2 O and H* absorption energies for HER, whereas hole accumulation on MoO2 is responsible for improving the BEOR activity. Thanks to its interfacial electronic structure, MoO2 -FeP@C exhibits excellent HER activity with an overpotential of 103 mV at 10 mA cm-2 and a Tafel slope of 48 mV dec-1 . Meanwhile, when 5-hydroxymethylfurfural is chosen as the biomass for BEOR, the conversion is almost 100%, and 2,5-furandicarboxylic acid (FDCA) is obtained with the selectivity of 98.6%. The electrolyzer employing MoO2 -FeP@C for cathodic H2 and anodic FDCA production requires only a low voltage of 1.486 V at 10 mA cm-2 and can be powered by a solar cell (output voltage: 1.45 V). Additionally, other BEORs coupled with HER catalyzed by MoO2 -FeP@C also have excellent catalytic performance, implying their good versatility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...