RESUMEN
Nymphoides coronata is an endangered aquatic plant species with significant medicinal and ecological importance. To preserve N. coronata from going extinct, we need to provide seedlings and efficient multiplication techniques so that it can be extensively studied. This study aimed to identify the most suitable sterilization treatment, growth medium, and substrate for the cultivation and propagation of N. coronata. Ethanol sterilization, fungicide treatment, and sterile water washing were the most important sterilization steps. A combination of 6-benzylaminopurine (6-BA) and indoleacetic acid (IAA) was the most suitable medium for bud induction and shoot proliferation. The use of α-naphthaleneacetic acid (NAA) increased the rooting rate and rooting time compared to indole-3-butyric acid (IBA). Increasing the concentration of NAA from 0.5 to 1.0 mg/L increased the rooting rate from 78 to 100% and reduced the rooting time from 7 to 5 days. The survival rate of N. coronata seedlings was 100% in a mixture of red soil and sand (1:1, w/w). As a result, the procedure mentioned above could potentially be used to safely propagate this rare species on a large scale. These findings provide valuable insights into the optimal conditions for the successful cultivation and propagation of N. coronata, which can contribute to the conservation and sustainable use of this important rare plant species.
RESUMEN
Members of the Malvaceae family, including Corchorus spp., Gossypium spp., Bombax spp., and Ceiba spp., are important sources of natural fibers. In the past decade, the genomes of several Malvaceae species have been assembled; however, the evolutionary history of Malvaceae species and the differences in their fiber development remain to be clarified. Here, we report the genome assembly and annotation of two natural fiber plants from the Malvaceae, Bombax ceiba and Ceiba pentandra, whose assembled genome sizes are 783.56 Mb and 1575.47 Mb, respectively. Comparative analysis revealed that whole-genome duplication and Gypsy long terminal repeat retroelements have been the major causes of differences in chromosome number (2n = 14 to 2n = 96) and genome size (234 Mb to 2676 Mb) among Malvaceae species. We also used comparative genomic analyses to reconstruct the ancestral Malvaceae karyotype with 11 proto-chromosomes, providing new insights into the evolutionary trajectories of Malvaceae species. MYB-MIXTA-like 3 is relatively conserved among the Malvaceae and functions in fiber cell-fate determination in the epidermis. It appears to perform this function in any tissue where it is expressed, i.e. in fibers on the endocarp of B. ceiba and in ovule fibers of cotton. We identified a structural variation in a cellulose synthase gene and a higher copy number of cellulose synthase-like genes as possible causes of the finer, less spinnable, weaker fibers of B. ceiba. Our study provides two high-quality genomes of natural fiber plants and offers insights into the evolution of Malvaceae species and differences in their natural fiber formation and development through multi-omics analysis.
Asunto(s)
Genoma de Planta , Filogenia , Evolución MolecularRESUMEN
Proanthocyanidins (PAs), also known as "condensed tannins", are colorless metabolites produced through the flavonoid pathway that are involved in stress resistance in plants. Because PAs are involved in the anthocyanin biosynthetic pathway, they play a role in the modification of pigmentation conferred by anthocyanins in ornamental organs. In this study, we isolated the gene and functionally characterized an R2R3-MYB transcription factor (TF), AaMYB3, and a basic helix-loop-helix TF, AabHLH1, from Anthurium andraeanum (Hort.), a typical tropical flower. AaMYB3 is primarily expressed in the spathe and negatively correlates with anthocyanin accumulation. A complementation test in an Arabidopsis tt8 mutant showed that AabHLH1 successfully restores the PA-deficient seed coat phenotype. The ectopic overexpression of AaMYB3 alone or its coexpression with AabHLH1 in transgenic tobacco resulted in light pink or even pale-pink corolla limbs by reducing their anthocyanin levels and greatly enhancing their accumulation of PAs. This overexpression of the anthurium TF genes upregulated the late anthocyanin enzyme-encoding genes (NtDFR and NtANS) and the key PA genes (NtLAR and NtANR) in transgenic tobacco. The interaction between AaMYB3 and the AabHLH1 protein was confirmed using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. In the developing red spathes of the cultivars "Vitara" and "Tropical", the expression of AaMYB3 was closely linked to PA accumulation, and AaMYB3 was coexpressed with AaCHS, AaF3H, AaDFR, AaANS, AaLAR, and AaANR. The expression pattern of AabHLH1 was similar to that of AaF3'H. Our results suggest that AaMYB3 and AabHLH1 are involved in the regulation of PA biosynthesis in anthurium and could potentially be used to metabolically engineer PA biosynthesis in plants.
RESUMEN
Dendrobium hybrids orchid are popular throughout the world. They have various floral color and pigmentation patterns that are mainly caused by anthocyanins. It is well established that anthocyanin biosynthesis is regulated by the interplay between MYB and bHLH transcription factors (TF) in most plants. In this study, we identified one R2R3-MYB gene, DhMYB2, and one bHLH gene, DhbHLH1, from a Dendrobium hybrid. Their expression profiles were related to anthocyanin pigmentation in Dendrobium petals. Transient over-expression of these two TF genes showed that both DhMYB2 and DhbHLH1 resulted in anthocyanin production in white petals. The interaction between the two TFs was observed in vitro. In different Dendrobium hybrids petals with various pigmentations, DhMYB2 and DhbHLH1 were co-expressed with DhDFR and DhANS, which are regarded as potential regulatory targets of the two TFs. In flowers with distinct purple lips but white or yellow petals/sepals, the expression of DhbHLH1 was only related to anthocyanin accumulation in the lips. Taken together, DhMYB2 interacted with DhbHLH1 to regulate anthocyanin production in Dendrobium hybrid petals. DhbHLH1 was also responsible for the distinct anthocyanin pigmentation in lip tissues. The functional characterization of DhMYB2 and DhbHLH1 will improve understanding of anthocyanin biosynthesis modulation in Dendrobium orchids.
Asunto(s)
Antocianinas/biosíntesis , Vías Biosintéticas , Dendrobium/metabolismo , Flores/metabolismo , Hibridación Genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Vías Biosintéticas/genética , Análisis por Conglomerados , Dendrobium/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Filogenia , Pigmentación/genética , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Unión Proteica , Análisis de Secuencia de Proteína , Técnicas del Sistema de Dos HíbridosRESUMEN
KEY MESSAGE: A R2R3-MYB gene AaMYB2 was isolated from Anthurium andraeanum (Hort.) and was functionally characterized to be a positive transcriptional regulator for anthocyanin biosynthesis in the spathes and leaves. Spathe coloration is an important Anthurium andraeanum (Hort.) characteristic, which is mainly contributed by anthocyanins. R2R3-MYB transcription factors (TFs) are important regulators of anthocyanin biosynthesis in plants. Here we describe the identification and characterization of AaMYB2, a member in subgroup 6 of the R2R3-MYB TFs family, which correlated with anthocyanin biosynthesis in A. andraeanum. AaMYB2 was a nuclear-localization protein with positive transcriptional activity, and prominently expressed in the red spathes. Ectopic expression of AaMYB2 in tobacco led to anthocyanin accumulation and up-regulation of the early and late anthocyanin pathway genes, particularly NtDFR, NtANS, and NtUFGT, and the endogenous TF genes NtAn2 and NtAn1 in leaves. In the developing red spathes of 'Tropical' and 'Vitara', the expression of AaMYB2 was closely linked to anthocyanin accumulation, and co-expressed with AaCHS, AaF3H, and AaANS, the latter two of which were regarded as the potential targets of the R locus encoding a TF controlling spathe colors inheritance in anthurium. In addition, the transcription level of AaMYB2 in various cultivars with different color phenotypes showed that AaMYB2 was drastically expressed in the spathes from the red, pink, and purple cultivars, but hardly detected in the spathes from the white and green ones. Besides, AaMYB2 also showed higher expression in newly developmental leaves when anthocyanin was actively biosynthesized. Taken together, AaMYB2 positively related to anthocyanin biosynthesis in anthurium spathes and leaves, and appeared to regulate the expression of AaF3H, AaANS, and possibly AaCHS.
Asunto(s)
Antocianinas/biosíntesis , Araceae/genética , Genes de Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Anotación de Secuencia Molecular , Fenotipo , Filogenia , Pigmentación/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ARN , Fracciones Subcelulares/metabolismo , Nicotiana/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Transcriptoma/genéticaRESUMEN
Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism.