Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cyborg Bionic Syst ; 5: 0125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841725

RESUMEN

Depression is a common and severely debilitating neuropsychiatric disorder. Multiple studies indicate a strong correlation between the occurrence of immunological inflammation and the presence of depression. The basolateral amygdala (BLA) is crucial in the cognitive and physiological processing and control of emotion. However, due to the lack of detection tools, the neural activity of the BLA during depression is not well understood. In this study, a microelectrode array (MEA) based on the shape and anatomical location of the BLA in the brain was designed and manufactured. Rats were injected with lipopolysaccharide (LPS) for 7 consecutive days to induce depressive behavior. We used the MEA to detect neural activity in the BLA before modeling, during modeling, and after LPS administration on 7 consecutive days. The results showed that after LPS treatment, the spike firing of neurons in the BLA region of rats gradually became more intense, and the local field potential power also increased progressively. Further analysis revealed that after LPS administration, the spike firing of BLA neurons was predominantly in the theta rhythm, with obvious periodic firing characteristics appearing after the 7 d of LPS administration, and the relative power of the local field potential in the theta band also significantly increased. In summary, our results suggest that the enhanced activity of BLA neurons in the theta band is related to the depressive state of rats, providing valuable guidance for research into the neural mechanisms of depression.

2.
Adv Sci (Weinh) ; : e2401670, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828784

RESUMEN

Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability. Conventional rigid-based electrodes cause inflammatory responses, restricting recording durations. Inspired by the jellyfish tentacles, the multi-conductive layer ultra-flexible microelectrode arrays (MEAs) are developed. The tentacle MEAs ensure stable recordings during movement, thereby enabling the discovery of soft boundary neurons. The soft boundary neurons demonstrate high-frequency firing that aligns with the boundaries of scene transitions. Furthermore, the localization ability of soft boundary neurons improves with more scene transition boundaries, and their activity decreases when these boundaries are removed. The innovation of ultra-flexible, high-biocompatible tentacle MEAs improves the understanding of neural encoding in spatial cognition. They offer the potential for long-term in vivo recording of neural information, facilitating breakthroughs in the understanding and application of brain spatial navigation mehanisms.

3.
Cyborg Bionic Syst ; 5: 0123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784125

RESUMEN

The globus pallidus internus (GPi) was considered a common target for stimulation in Parkinson's disease (PD). Located deep in the brain and of small size, pinpointing it during surgery is challenging. Multi-channel microelectrode arrays (MEAs) can provide micrometer-level precision functional localization, which can maximize the surgical outcome. In this paper, a 64-channel MEA modified by platinum nanoparticles with a detection site impedance of 61.1 kΩ was designed and prepared, and multiple channels could be synchronized to cover the target brain region and its neighboring regions so that the GPi could be identified quickly and accurately. The results of the implant trajectory indicate that, compared to the control side, there is a reduction in local field potential (LFP) power in multiple subregions of the upper central thalamus on the PD-induced side, while the remaining brain regions exhibit an increasing trend. When the MEA tip was positioned at 8,700 µm deep in the brain, the various characterizations of the spike signals, combined with the electrophysiological characteristics of the ß-segmental oscillations in PD, enabled MEAs to localize the GPi at the single-cell level. More precise localization could be achieved by utilizing the distinct characteristics of the internal capsule (ic), the thalamic reticular nucleus (Rt), and the peduncular part of the lateral hypothalamus (PLH) brain regions, as well as the relative positions of these brain structures. The MEAs designed in this study provide a new detection method and tool for functional localization of PD targets and PD pathogenesis at the cellular level.

4.
Adv Mater ; 36(27): e2314310, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655719

RESUMEN

The precise delivery of anti-seizure medications (ASM) to epileptic loci remains the major challenge to treat epilepsy without causing adverse drug reactions. The unprovoked nature of epileptic seizures raises the additional need to release ASMs in a spatiotemporal controlled manner. Targeting the oxidative stress in epileptic lesions, here the reactive oxygen species (ROS) induced in situ supramolecular assemblies that synergized bioorthogonal reactions to deliver inhibitory neurotransmitter (GABA) on-demand, are developed. Tetrazine-bearing assembly precursors undergo oxidation and selectively self-assemble under pathological conditions inside primary neurons and mice brains. Assemblies induce local accumulation of tetrazine in the hippocampus CA3 region, which allows the subsequent bioorthogonal release of inhibitory neurotransmitters. For induced acute seizures, the sustained release of GABA extends the suppression than the direct supply of GABA. In the model of permanent damage of CA3, bioorthogonal ligation on assemblies provides a reservoir of GABA that behaves prompt release upon 365 nm irradiation. Incorporated with the state-of-the-art microelectrode arrays, it is elucidated that the bioorthogonal release of GABA shifts the neuron spike waveforms to suppress seizures at the single-neuron precision. The strategy of in situ supramolecular assemblies-directed bioorthogonal prodrug activation shall be promising for the effective delivery of ASMs to treat epilepsy.


Asunto(s)
Hipocampo , Neurotransmisores , Especies Reactivas de Oxígeno , Convulsiones , Ácido gamma-Aminobutírico , Animales , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Ratones , Neurotransmisores/metabolismo , Neurotransmisores/química , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/metabolismo , Hipocampo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neuronas/metabolismo , Liberación de Fármacos , Región CA3 Hipocampal/metabolismo
5.
Front Bioeng Biotechnol ; 12: 1376151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633666

RESUMEN

The striatum plays a crucial role in studying epilepsy, as it is involved in seizure generation and modulation of brain activity. To explore the complex interplay between the striatum and epilepsy, we engineered advanced microelectrode arrays (MEAs) specifically designed for precise monitoring of striatal electrophysiological activities in rats. These observations were made during and following seizure induction, particularly three and 7 days post-initial modeling. The modification of graphene oxide (GO)/poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/platinu-m nanoparticles (PtNPs) demonstrated a marked reduction in impedance (10.5 ± 1.1 kΩ), and maintained exceptional stability, with impedance levels remaining consistently low (23 kΩ) even 14 days post-implantation. As seizure intensity escalated, we observed a corresponding increase in neuronal firing rates and local field potential power, with a notable shift towards higher frequency peaks and augmented inter-channel correlation. Significantly, during the grand mal seizures, theta and alpha bands became the dominant frequencies in the local field potential. Compared to the normal group, the spike firing rates on day 3 and 7 post-modeling were significantly higher, accompanied by a decreased firing interval. Power in both delta and theta bands exhibited an increasing trend, correlating with the duration of epilepsy. These findings offer valuable insights into the dynamic processes of striatal neural activity during the initial and latent phases of temporal lobe epilepsy and contribute to our understanding of the neural mechanisms underpinning epilepsy.

6.
ACS Sens ; 8(12): 4765-4773, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38015643

RESUMEN

The functioning of place cells requires the involvement of multiple neurotransmitters, with dopamine playing a critical role in hippocampal place cell activity. However, the exact mechanisms through which dopamine influences place cell activity remain largely unknown. Herein, we present the development of the integrated three-electrode dual-mode detection chip (ITDDC), which enables simultaneous recording of the place cell activity and dopamine concentration fluctuation. The working electrode, reference electrode, and counter electrode are all integrated within the ITDDC in electrochemical detection, enabling the real-time in situ monitoring of dopamine concentrations in animals in motion. The reference, working, and counter electrodes are surface-modified using PtNPs and polypyrrole, PtNPs and PEDOT:PSS, and PtNPs, respectively. This modification allows for the detection of dopamine concentrations as low as 20 nM. We conducted dual-mode testing on mice in a novel environment and an environment with food rewards. We found distinct dopamine concentration variations along different paths within a novel environment, implying that different dopamine levels may contribute to spatial memory. Moreover, environmental food rewards elevate dopamine significantly, followed by the intense firing of reward place cells, suggesting a crucial role of dopamine in facilitating the encoding of reward-associated locations in animals. The real-time and in situ recording capabilities of ITDDC offer new opportunities to investigate the interplay between electrophysiology and dopamine during animal exploration and reward-based memory and provide a novel glimpse into the correlation between dopamine levels and place cell activity.


Asunto(s)
Dopamina , Células de Lugar , Ratones , Animales , Polímeros , Pirroles , Electrodos , Recompensa
7.
Research (Wash D C) ; 6: 0229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719050

RESUMEN

Epilepsy severely impairs the cognitive behavior of patients. It remains unclear whether epilepsy-induced cognitive impairment is associated with neuronal activities in the medial entorhinal cortex (MEC), a region known for its involvement in spatial cognition. To explore this neural mechanism, we recorded the spikes and local field potentials from MEC neurons in lithium-pilocarpine-induced epileptic rats using self-designed microelectrode arrays. Through the open field test, we identified spatial cells exhibiting spatially selective firing properties and assessed their spatial representations in relation to the progression of epilepsy. Meanwhile, we analyzed theta oscillations and theta modulation in both excitatory and inhibitory neurons. Furthermore, we used a novel object recognition test to evaluate changes in spatial cognitive ability of epileptic rats. After the epilepsy modeling, the spatial tuning of various types of spatial cells had suffered a rapid and pronounced damage during the latent period (1 to 5 d). Subsequently, the firing characteristics and theta oscillations were impaired. In the chronic period (>10 d), the performance in the novel object experiment deteriorated. In conclusion, our study demonstrates the detrimental effect on spatial representations and electrophysiological properties of MEC neurons in the epileptic latency, suggesting the potential use of these changes as a "functional biomarker" for predicting cognitive impairment caused by epilepsy.

8.
Microsyst Nanoeng ; 9: 70, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275263

RESUMEN

Threatened animals respond with appropriate defensive behaviors to survive. It has been accepted that midbrain periaqueductal gray (PAG) plays an essential role in the circuitry system and organizes defensive behavioral responses. However, the role and correlation of different PAG subregions in the expression of different defensive behaviors remain largely unexplored. Here, we designed and manufactured a microelectrode array (MEA) to simultaneously detect the activities of dPAG and vPAG neurons in freely behaving rats. To improve the detection performance of the MEAs, PtNP/PEDOT:PSS nanocomposites were modified onto the MEAs. Subsequently, the predator odor was used to induce the rat's innate fear, and the changes and information transmission in neuronal activities were detected in the dPAG and vPAG. Our results showed that the dPAG and vPAG participated in innate fear, but the activation degree was distinct in different defense behaviors. During flight, neuronal responses were stronger and earlier in the dPAG than the vPAG, while vPAG neurons responded more strongly during freezing. By applying high-performance MEA, it was revealed that neural information spread from the activated dPAG to the weakly activated vPAG. Our research also revealed that dPAG and vPAG neurons exhibited different defensive discharge characteristics, and dPAG neurons participated in the regulation of defense responses with burst-firing patterns. The slow activation and continuous firing of vPAG neurons cooresponded with the regulation of long-term freezing responses. The results demonstrated the important role of PAG neuronal activities in controlling different aspects of defensive behaviors and provided novel insights for investigating defense from the electrophysiological perspective.

9.
Biosensors (Basel) ; 13(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37232857

RESUMEN

The electrophysiological activities of head direction (HD) cells under visual and vestibular input dissociation are important to understanding the formation of the sense of direction in animals. In this paper, we fabricated a PtNPs/PEDOT:PSS-modified MEA to detect changes in the discharge of HD cells under dissociated sensory conditions. The electrode shape was customized for the retrosplenial cortex (RSC) and was conducive to the sequential detection of neurons at different depths in vivo when combined with a microdriver. The recording sites of the electrode were modified with PtNPs/PEDOT:PSS to form a three-dimensional convex structure, leading to closer contact with neurons and improving the detection performance and signal-to-noise ratio of the MEA. We designed a rotating cylindrical arena to separate the visual and vestibular information of the rats and detected the changes in the directional tuning of the HD cells in the RSC. The results showed that after visual and vestibular sensory dissociation, HD cells used visual information to establish newly discharged directions which differed from the original direction. However, with the longer time required to process inconsistent sensory information, the function of the HD system gradually degraded. After recovery, the HD cells reverted to their newly established direction rather than the original direction. The research based on our MEAs revealed how HD cells process dissociated sensory information and contributes to the study of the spatial cognitive navigation mechanism.


Asunto(s)
Giro del Cíngulo , Animales , Ratas , Microelectrodos , Neuronas/fisiología
10.
ACS Sens ; 8(4): 1810-1818, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37014663

RESUMEN

Precise and directional couplings of functional nanomaterials with implantable microelectrode arrays (IMEAs) are critical for the manufacture of sensitive enzyme-based electrochemical neural sensors. However, there is a gap between the microscale of IMEA and conventional bioconjugation techniques for enzyme immobilization, which leads to a series of challenges such as limited sensitivity, signal crosstalk, and high detection voltage. Here, we developed a novel method using carboxylated graphene oxide (cGO) to directionally couple the glutamate oxidase (GluOx) biomolecules onto the neural microelectrode to monitor glutamate concentration and electrophysiology in the cortex and hippocampus of epileptic rats under RuBi-GABA modulation. The resulting glutamate IMEA exhibited good performance involving less signal crosstalk between microelectrodes, lower reaction potential (0.1 V), and higher linear sensitivity (141.00 ± 5.66 nA µM-1 mm-2). The excellent linearity ranged from 0.3 to 68 µM (R = 0.992), and the limit of detection was 0.3 µM. For epileptic rats, the proposed IMEA sensitively obtained synergetic variations in the action potential (Spike), local field potentials (LFPs), and glutamate of the cortex and hippocampus during seizure and RuBi-GABA inhibition. We found that the increase in glutamate preceded the burst of electrophysiological signals. At the same time, both changes in the hippocampus preceded the cortex. This reminded us that glutamate changes in the hippocampus could serve as important indicators for early warning of epilepsy. Our findings provided a new technical strategy for directionally stabilizing enzymes onto the IMEA with versatile implications for various biomolecules' modification and facilitated the development of detecting tools for understanding the neural mechanism.


Asunto(s)
Epilepsia , Hipocampo , Ratas , Animales , Microelectrodos , Ratas Sprague-Dawley , Hipocampo/fisiología , Ácido Glutámico , Ácido gamma-Aminobutírico/farmacología
11.
ACS Appl Bio Mater ; 6(3): 1260-1271, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36884222

RESUMEN

Hypoglycemia state damages the organism, and glucose-excited and glucose-inhibited neurons from the ventral medial hypothalamus can regulate this state. Therefore, it is crucial to understand the functional mechanism between blood glucose and electrophysiology of glucose-excited and glucose-inhibited neurons. To better detect and analyze this mechanism, a PtNPs/PB nanomaterials modified 32-channel microelectrode array with low impedance (21.91 ± 6.80 kΩ), slight phase delay (-12.7° ± 2.7°), high double layer capacitance (0.606 µF), and biocompatibility was developed to realize in vivo real-time detection of the electrophysiology activities of glucose-excited and glucose-inhibited neurons. The phase-locking level of some glucose-inhibited neurons elevated during fasting (low blood glucose state) and showed theta rhythms after glucose injection (high blood glucose state). With an independent oscillating ability, glucose-inhibited neurons can provide an essential indicator to prevent severe hypoglycemia. The results reveal a mechanism for glucose-sensitive neurons to respond to blood glucose. Some glucose-inhibited neurons can integrate glucose information input and convert it into theta oscillating or phase lock output. It helps in enhancing the interaction between neurons and glucose. Therefore, the research can provide a basis for further controlling blood glucose by modulating the characteristics of neuronal electrophysiology. This helps reduce the damage of organisms under energy-limiting conditions, such as prolonged manned spaceflight or metabolic disorders.


Asunto(s)
Hipoglucemia , Nanocompuestos , Humanos , Glucosa/farmacología , Glucemia/metabolismo , Microelectrodos , Neuronas/metabolismo , Hipoglucemia/diagnóstico , Hipoglucemia/metabolismo
12.
Biosens Bioelectron ; 217: 114726, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174358

RESUMEN

Place cells establish rapid mapping relationships between the external environment and themselves in a new context. However, the mapping relationships of environmental cues to place cells in short-term memory is still completely unknown. In this work, we designed a silicon-based motion microelectrode array (mMEA) and an implantation device to record electrophysiological signals of place cells in CA1, CA3, and DG regions in the hippocampus of ten mice in motion, and investigated the corresponding place fields under distal or local cues in just a few minutes. The mMEA can expand the detection area and greatly lower the motion noise. Finding and recording place cells of moving mice in short-term memory is made possible by the mMEA. The place-related cells were found for the first time. Unlike place cells, which only fire in a particular position of the environment, place-related cells fire in numerous areas of the environment. Furthermore, place cells in the CA1 and CA3 have the most stable place memory for time-preferred single cues, and they fire in concert with place-related cells during short-term memory dynamics, whereas place cells in the DG regions have overlapping and unstable place memory in a multi-cue context. These results demonstrate the consistency of place cells in CA1 and CA3 and reflect their different roles in spatial memory processing during familiarization with new environments. The mMEA provides a platform for studying the place cells of short-term memory.


Asunto(s)
Técnicas Biosensibles , Células de Lugar , Animales , Hipocampo , Memoria a Corto Plazo , Ratones , Microelectrodos , Neuronas/fisiología , Ratas , Ratas Long-Evans , Silicio
13.
Microsyst Nanoeng ; 8: 104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124081

RESUMEN

Grid cells with stable hexagonal firing patterns in the medial entorhinal cortex (MEC) carry the vital function of serving as a metric for the surrounding environment. Whether this mechanism processes only spatial information or involves nonspatial information remains elusive. Here, we fabricated an MEC-shaped microelectrode array (MEA) to detect the variation in neural spikes and local field potentials of the MEC when rats forage in a square enclosure with a planar, three-dimensional object and social landmarks in sequence. The results showed that grid cells exhibited rate remapping under social conditions in which spike firing fields closer to the social landmark had a higher firing rate. Furthermore, global remapping showed that hexagonal firing patterns were rotated and scaled when the planar landmark was replaced with object and social landmarks. In addition, when grid cells were activated, the local field potentials were dominated by the theta band (5-8 Hz), and spike phase locking was observed at troughs of theta oscillations. Our results suggest the pattern separation mechanism of grid cells in which the spatial firing structure and firing rate respond to spatial and social information, respectively, which may provide new insights into how the brain creates a cognitive map.

14.
Front Neurosci ; 16: 868235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620664

RESUMEN

The medial amygdala (MA) plays an important role in the innate fear circuit. However, the electrophysiological mechanism of MA for processing innate fear needs to be further explored. In this study, we fabricated microelectrode arrays (MEAs) with detecting sites arranged to match the location and shape of MA in mice and detected the electrophysiology in freely behaving mice under 2-methyl-2-thiazoline (2MT)-induced fear. The detection performance of MEA is improved by modifying metal nanoparticles and conductive polymers (PtNPs/PEDOT:PSS). After modification, the impedance magnitude and phase of electrodes were decreased to 27.0 ± 2.3 kΩ and -12.30 ± 0.52°, respectively, leading to a signal-to-noise ratio of 10. Its electrochemical stability and mechanical stability were also verified by cyclic voltammetry (CV) sweeping and ultrasonic vibration. MEAs were then implanted into the MA of mice, and the electrophysiology and behavioral characteristics were synchronously recorded and analyzed. The results showed that 2MT induced strong defensive behaviors in mice, accompanied by increases in the average spike firing rate and local field potential (LFP) power of MA neurons. According to principles commonly applied to cortical extracellular recordings, the recorded neurons are divided into two classes based on waveforms. Statistics showed that about 37% of type 1 neurons (putative GABAergic neurons) and 87% of type 2 neurons (putative glutamatergic neurons) were significantly activated under innate fear. At the same time, the firing rate of some activated neurons had a good linear correlation with the freezing rate.

15.
Biosensors (Basel) ; 12(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35448253

RESUMEN

Defense is the basic survival mechanism of animals when facing dangers. Previous studies have shown that the midbrain periaqueduct gray (PAG) was essential for the production of defense responses. However, the correlation between the endogenous neuronal activities of the dorsal PAG (dPAG) and different defense behaviors was still unclear. In this article, we designed and manufactured microelectrode arrays (MEAs) whose detection sites were arranged to match the shape and position of dPAG in rats, and modified it with platinum-black nanoparticles to improve the detection performance. Subsequently, we successfully recorded the electrophysiological activities of dPAG neurons via designed MEAs in freely behaving rats before and after exposure to the potent analog of predator odor 2-methyl-2-thiazoline (2-MT). Results demonstrated that 2-MT could cause strong innate fear and a series of defensive behaviors, accompanied by the significantly increased average firing rate and local field potential (LFP) power of neurons in dPAG. We also observed that dPAG participated in different defense behaviors with different degrees of activation, which was significantly stronger in the flight stage. Further analysis showed that the neuronal activities of dPAG neurons were earlier than flight, and the intensity of activation was inversely proportional to the distance from predator odor. Overall, our results indicate that dPAG neuronal activities play a crucial role in controlling different types of predator odor-evoked innate fear/defensive behaviors, and provide some guidance for the prediction of defense behavior.


Asunto(s)
Miedo , Sustancia Gris Periacueductal , Animales , Miedo/fisiología , Microelectrodos , Neuronas , Sustancia Gris Periacueductal/fisiología , Ratas
16.
Biosens Bioelectron ; 209: 114263, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483214

RESUMEN

Clinical transplantation of human embryonic stem cells derived dopaminergic neurons (hESC-DDNs) is expected to be a potential therapy for treating neurodegenerative diseases. However, the assessment of the physiological functions, including electrophysiology and dopamine (DA) vesicular exocytosis of hESC-DDNs are not impeccable currently, which deeply limits the clinical application of hESC-DDNs. To overcome this challenge, we developed a multifunctional microelectrode array (MEA) which can detect both electrophysiological signals and DA vesicular exocytosis. The reduced oxidation graphene, poly(3,4-ethylenedioxythiophene) and poly (sodium-4-styrenesultanate) nanocomposites (rGO/PEDOT:PSS) were electrochemically deposited on the MEAs to improve their electrical characterizations with low impedance and small phase delay, and electrochemical characterizations with low oxidation potential, low detection limit, high sensitivity, wide linear range and high sensitivity. In the hESC-DDNs experiment, the modified MEA could detect electrophysiological signals with low noise (25 µV) and high signal-to-noise ratio (>5.4), and the weak current signals generated by DA vesicular exocytosis with high sensitivity (∼pA), high time resolution (sub-millisecond) and low noise (3 pA). Moreover, due to increased accuracy, the MEA could clearly distinguish two typical kinds of exocytosis spike events ("Spikes with foot" and "Spikes without foot") and found that the slow and low release through the fusion pore was an important mode of DA vesicular exocytosis in hESC-DDNs. Our work proved that the hESC-DDNs had the basic physiological functions as human dopaminergic neurons, which would be beneficial to the clinical application of the hESC-DDNs.


Asunto(s)
Técnicas Biosensibles , Células Madre Embrionarias Humanas , Dopamina , Neuronas Dopaminérgicas , Electrofisiología , Exocitosis , Humanos , Microelectrodos
17.
ACS Sens ; 7(2): 584-592, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35060694

RESUMEN

Both programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are important proteins in cancer immunotherapy. Soluble forms (sPD-1 and sPD-L1) have potential for determining treatment and prognosis monitoring. However, there is a lack of detection methods for point-of-care testing (POCT) of these two proteins, so a low-cost rapid detection platform is urgently needed. To solve this problem, a dual-channel electrochemical platform, including a folding paper-based immunosensor and a POCT system for rapid simultaneous detection of these two proteins was designed and fabricated. The immunosensor consists of a three-electrode system and a reaction cell. The surface of the working electrode was modified with nanocomposites synthesized from amine-functionalized single-walled carbon nanotubes, new methylene blue, and gold nanoparticles. Antibodies to sPD-1 and sPD-L1 were also immobilized on the working electrode surface. A differential pulse voltammetry electrochemical method was adopted. The immunosensor was able to detect sPD-1 and sPD-L1 in the ranges of 50 pg/mL to 50 ng/mL and 5 pg/mL to 5 ng/mL, respectively. The limits of detection were 10 and 5 pg/mL. Using this detection platform, sPD-1 and sPD-L1 in plasma were detected by both enzyme-linked immunosorbent assay and the immunosensor, which has good application potential.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanotubos de Carbono , Antígeno B7-H1 , Oro , Inmunoensayo , Pruebas en el Punto de Atención
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...