Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 933: 173079, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735331

RESUMEN

Bacillus cereus (B. cereus) from cow milk poses a threat to public health, causing food poisoning and gastrointestinal disorders in humans. We identified CwpFM, an enterotoxin from B. cereus, caused oxidative stress and inflammatory responses in mouse colon and colonic epithelial cells. Colon proteomics revealed that CwpFM elevated proteins associated with inflammation and oxidative stress. Notably, CwpFM induced activation of the NLRP3/NF-κB signaling, but suppressed antioxidant NFE2L2/HO-1 expression in the intestine and epithelial cells. Consistently, CwpFM exposure led to cytotoxicity and ROS accumulation in Caco-2 cells in a dose-dependent manner. Further, NAC (ROS inhibitor) treatment abolished NLRP3/NF-κB activation due to CwpFM. Moreover, overexpression of Nfe2l2 or activation of NFE2L2 by NK-252 reduced ROS production and inhibited activation of the NLRP3/NF-κB pathway. Inhibition of NF-κB by ADPC and/or suppression of NLRP3 by MCC950 attenuated CwpFM-induced inflammatory responses in Caco-2 cells. Collectively, CwpFM induced oxidative stress and NLRP3/NF-κB activation by inhibiting the NFE2L2/HO-1 signaling and ROS accumulation, leading to the development of intestinal inflammation. Our data elucidate the role of oxidative stress and innate immunity in CwpFM enterotoxicity and contribute to developing diagnostic and therapeutic products for B. cereus-related food safety issues.


Asunto(s)
Bacillus cereus , Inflamación , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Transducción de Señal , Bacillus cereus/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , FN-kappa B/metabolismo , Animales , Células CACO-2 , Humanos , Colon , Enterotoxinas/toxicidad
2.
Molecules ; 29(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611855

RESUMEN

Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.


Asunto(s)
Chenopodium quinoa , Ácidos Hexurónicos , Staphylococcus aureus Resistente a Meticilina , Arabinosa , Escherichia coli , Grano Comestible
3.
Int J Biol Macromol ; 258(Pt 2): 128833, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128806

RESUMEN

Natural polysaccharides exhibit numerous beneficial properties, such as antioxidant, antitumor, hypoglycemic, and hypolipidemic activities. Moringa oleifera seeds are of high dietary and therapeutic value which drew a lot of attention. However, the regulation effect on anti-inflammatory activity of polysaccharides remains to be studied. Herein, novel bioactive polysaccharides (MOSP-1) were extracted from Moringa oleifera seeds, and the anti-inflammatory properties of MOSP-1 were uncovered. Ultrasound-assisted extraction (UAE) was used to prepare the polysaccharides with optimized conditions (70 °C, 43 min, and liquid-solid-ratio 15 mL/g). Then, DEAE-Sepharose Fast Flow columns were applied to isolate and purify MOSP-1. Rhamnose, arabinose, galactose, and glucose were identified as the monosaccharide constituents of MOSP-1, with a molecular weight of 5.697 kDa. Their proportion in molarity was 1:0.183:0.108:0.860 and 8 types of glycosidic linkages were discovered. Bioactive assays showed that MOSP-1 possessed scavenging activities against DPPH and ABTS radicals, confirming its potential antioxidation efficacy. In vitro experiments revealed that MOSP-1 could reduce the expression of inflammation-related cytokines, inhibit the activation of ERK, JNK, and p38 (the MAPK signaling pathway), and enhance phagocytic functions. This study indicates that polysaccharides (MOSP-1) from Moringa oleifera seeds with anti-inflammatory properties may be used for functional food and pharmaceutical product development.


Asunto(s)
Moringa oleifera , Moringa oleifera/química , Ultrasonido , Polisacáridos/química , Antioxidantes/química , Antiinflamatorios , Semillas/química
4.
Heliyon ; 9(11): e21949, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045199

RESUMEN

Background: Several studies have reported that the mountain climate can alleviate asthma, however, the effect of tropical climate on migratory elderly, especially in people with respiratory or allergic diseases is unknown. Objectives: This cohort study aims to explore impact of climate and environmental changes on allergic diseases in migratory old people. Methods: In this prospective cohort study, we recruited 750 older migratory people, the majority of whom were homeowners to minimize the risk of loss to follow up. The study's inclusion criteria were elderly individuals had moved from northern China to Sanya and suffered from either asthma or allergic diseases. Prior to participation, these individuals provided informed consent and underwent baseline assessment. Subsequently, they will be followed for three years. A face-to-face interview was conducted to gather information regarding their living environment and habits. Trained investigators administered the questionnaires and performed physical examinations including height, weight, and blood pressure, while a professional respiratory doctor conducted pulmonary function tests. Blood samples were promptly tested routine blood test, liver function, kidney function, glucose, triglyceride, allergens, and inflammatory factors. Climate and environmental data were obtained from Sanya Meteorological Bureau and Ecological Environment Bureau, respectively. We primarily compared the differences of participants with asthma or allergic diseases between northern China and Sanya in southern China by Chi-square test, t-test or Wilcoxon rank-sum test. Findings: A total of 750 participants were recruited in this cohort from fourteen communities. All participants were surveyed questionnaires about health and family environment, underwent physical examinations, and collected biological samples for laboratory examinations. Novelty: This is the first study to evaluate the effects of tropical climate and environment on elderly migrants from cold regions. This study has important implication for the health tourism and aging health, especially for the elderly migrants who suffered the respiratory and allergic diseases. Furthermore, this cohort study establishes a solid foundation for investigating the influence of environmental changes on elderly migrants with allergic diseases.

5.
Front Public Health ; 11: 1290303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927865

RESUMEN

Background: The prevalence of allergic diseases has increased globally, climate and environment also have important effects on respiratory or allergic diseases. However, population-based studies investigating the impact of tropical climates and environments on migratory-bird old people (MBOP) are lacking. Methods/Design: For this prospective cohort study, we recruited 756 participants from the community in Sanya City, Hainan Province, China. In addition to the completed baseline survey, a follow-up survey will be conducted during the periods of October-December and March-April for the next 3 years of MBEPs from northern China who spend the winter in Sanya. We will continue to record the height, weight, and blood pressure of all participants, as well as lung function for those with asthma and chronic obstructive pulmonary disease (COPD). Venous blood at baseline and urine samples will be collected during follow-up. Results: A total of 756 volunteers were recruited. Their average age is 66.1 years; 32.1% of them have high-school educations, while 37.3% have graduated from college or done undergraduate studies. The top five diseases in this cohort are allergic rhinitis (57.9%); eczema, urticaria, or dermatitis (35.6%); bronchitis and bronchiectasis (35.6%); asthma (14.7%); and emphysema (11.7%). Compared with their symptoms while at their summer places of residence, rates of remission reported by participants while living in Sanya were 80.4% for allergic rhinitis, 82.3% for bronchitis and emphysema, 85.2% for asthma, 96.0% for COPD (P < 0.001). Conclusions: The baseline survey has been completed. The preliminary findings support that a tropical climate may relieve the symptoms of allergic diseases in migratory-bird old people.


Asunto(s)
Asma , Bronquitis , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Rinitis Alérgica , Humanos , Anciano , Estudios Prospectivos , Asma/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
6.
Nutrients ; 15(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37571345

RESUMEN

Western diet (WD) intake, aging, and inactivation of farnesoid X receptor (FXR) are risk factors for metabolic and chronic inflammation-related health issues ranging from metabolic dysfunction-associated steatotic liver disease (MASLD) to dementia. The progression of MASLD can be escalated when those risks are combined. Inactivation of FXR, the receptor for bile acid (BA), is cancer prone in both humans and mice. The current study used multi-omics including hepatic transcripts, liver, serum, and urine metabolites, hepatic BAs, as well as gut microbiota from mouse models to classify those risks using machine learning. A linear support vector machine with K-fold cross-validation was used for classification and feature selection. We have identified that increased urine sucrose alone achieved 91% accuracy in predicting WD intake. Hepatic lithocholic acid and serum pyruvate had 100% and 95% accuracy, respectively, to classify age. Urine metabolites (decreased creatinine and taurine as well as increased succinate) or increased gut bacteria (Dorea, Dehalobacterium, and Oscillospira) could predict FXR deactivation with greater than 90% accuracy. Human disease relevance is partly revealed using the metabolite-disease interaction network. Transcriptomics data were also compared with the human liver disease datasets. WD-reduced hepatic Cyp39a1 (cytochrome P450 family 39 subfamily a member 1) and increased Gramd1b (GRAM domain containing 1B) were also changed in human liver cancer and metabolic liver disease, respectively. Together, our data contribute to the identification of noninvasive biomarkers within the gut-liver axis to predict metabolic status.


Asunto(s)
Hígado Graso , Neoplasias Hepáticas , Ratones , Humanos , Animales , Hígado/metabolismo , Hígado Graso/metabolismo , Neoplasias Hepáticas/metabolismo , Inflamación/metabolismo , Biomarcadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Ratones Endogámicos C57BL
7.
Front Plant Sci ; 14: 1174747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077627

RESUMEN

Rapid, non-destructive and reliable detection of the oil content of corn seeds is important for development of high-oil corn. However, determination of the oil content is difficult using traditional methods for seed composition analysis. In this study, a hand-held Raman spectrometer was used with a spectral peak decomposition algorithm to determine the oil contents of corn seeds. Mature and waxy Zhengdan 958 corn seeds and mature Jingke 968 corn seeds were analyzed. Raman spectra were obtained in four regions of interest in the embryo of the seed. After analysis of the spectra, a characteristic spectral peak for the oil content was identified. A Gaussian curve fitting spectral peak decomposition algorithm was used to decompose the characteristic spectral peak of oil at 1657 cm-1. This peak was used to determine the Raman spectral peak intensity for the oil content in the embryo and differences in the oil contents among seeds of varying maturity and different varieties. This method is feasible and effective for detection of corn seed oil.

8.
Food Chem ; 418: 135952, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36940544

RESUMEN

The volatile organic compounds (VOCs) released from foods can reflect their internal properties. Artificial fragrant rice (AFR) is a fraudulent food product in which the flavor of low-quality rice is artificially enhanced by addition of essence. In this study, proton-transfer reaction mass spectrometry, long optical path gas phase FTIR spectroscopy and fiber optic evanescent wave were used to analyze the characteristic mass-charge ratios signal and infrared fingerprint signal of four essence which may be used to make AFR, and the prepared AFR samples with different essence levels (0.001 %-0.3 %) were used to verify the detection performance of the detection methods. The results show that the three detection methods effectively identified AFR containing the minimum recommended dose of essence (≥0.1 %, w/w). The above detection methods can provide detection results in real time without complex sample pretreatment and provide options as rapid screening methods for food regulatory authorities to identify AFR.


Asunto(s)
Oryza , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas/métodos , Odorantes/análisis
9.
Biomark Res ; 11(1): 20, 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36803569

RESUMEN

BACKGROUND: Aging and diet are risks for metabolic diseases. Bile acid receptor farnesoid X receptor (FXR) knockout (KO) mice develop metabolic liver diseases that progress into cancer as they age, which is accelerated by Western diet (WD) intake. The current study uncovers the molecular signatures for diet and age-linked metabolic liver disease development in an FXR-dependent manner. METHODS: Wild-type (WT) and FXR KO male mice, either on a healthy control diet (CD) or a WD, were euthanized at the ages of 5, 10, or 15 months. Hepatic transcriptomics, liver, serum, and urine metabolomics as well as microbiota were profiled. RESULTS: WD intake facilitated hepatic aging in WT mice. In an FXR-dependent manner, increased inflammation and reduced oxidative phosphorylation were the primary pathways affected by WD and aging. FXR has a role in modulating inflammation and B cell-mediated humoral immunity which was enhanced by aging. Moreover, FXR dictated neuron differentiation, muscle contraction, and cytoskeleton organization in addition to metabolism. There were 654 transcripts commonly altered by diets, ages, and FXR KO, and 76 of them were differentially expressed in human hepatocellular carcinoma (HCC) and healthy livers. Urine metabolites differentiated dietary effects in both genotypes, and serum metabolites clearly separated ages irrespective of diets. Aging and FXR KO commonly affected amino acid metabolism and TCA cycle. Moreover, FXR is essential for colonization of age-related gut microbes. Integrated analyses uncovered metabolites and bacteria linked with hepatic transcripts affected by WD intake, aging, and FXR KO as well as related to HCC patient survival. CONCLUSION: FXR is a target to prevent diet or age-associated metabolic disease. The uncovered metabolites and microbes can be diagnostic markers for metabolic disease.

10.
Sci Total Environ ; 863: 160995, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36535473

RESUMEN

The serious ecological damage caused by mining activities cannot be ignored. The use of an environmentally friendly restoration method to rebuild the vegetation and soil environment in the mining area has attracted more and more attention. This paper aims to study soil quality as well as vegetation characteristics of four woody species including Pinus massoniana (P. massoniana), Broussonetia papyrifera (B. papyrifera), Koelreuteria paniculata (K. paniculata), Osmanthus fragrans (O. fragrans), and two herbaceous species including Setaria viridis (S. viridis) and Cynodon dactylon (C. dactylon). In addition, we further clarified the effects of B. papyrifera and K. paniculata on soil nutrients and microbial communities after restoration. The results showed that the vegetation restoration area had better soil quality and plant community diversity, and the woody plants restoration effect were better. Compared with slag, B. papyrifera and K. paniculata remediation could improve soil pH and mitigate heavy metal contamination in mining areas, but was not effective in enhancing Soil Organic Matter (SOM), Total Nitrogen (TN), Total Potassium (TK) and Total Phosphorus (TP). In addition, the abundance and diversity of soil bacterial communities were increased. Of all the study sites, Proteobacteria had the greatest dominance. Vegetation restoration resulted in an increase in the relative abundance of Acidobacteria, while a decrease in Actinobacteria, Cyanobacteria and Firmicutes. With the restoration of vegetation, the increase of pH, the change of TN, SOM, TK, TP and the mitigation of Manganese (Mn) pollution were the main reasons affecting the soil microbial community. This study has great significance for understanding the ecological changes in the mining area after artificially mediated vegetation restoration, including changes in soil environment, plant community and microbial community, and woody plants will be more encouraged for the restoration of manganese mining areas.


Asunto(s)
Manganeso , Metales Pesados , Manganeso/análisis , Biodegradación Ambiental , Plantas , Metales Pesados/análisis , Bacterias , Suelo/química , Microbiología del Suelo
11.
BMC Plant Biol ; 22(1): 598, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539704

RESUMEN

BACKGROUND: Juglans regia L. is an important nut tree that has a wide range of distribution in temperate regions of the world. In some walnut orchards, walnut blight can become a problematic disease that affects the growth of walnut trees. To explore the correlation between biochemical response and walnut resistance, we inoculated four walnut cultivars with Xanthomonas arboricola pv. juglandis (Xaj). The walnut cultivars were, namely, 'Xiangling', 'Xiluo 2', 'Yuanfeng' and 'Xifu 2'. Total phenol content (TPC) and total flavonoid content (TFC) were measured, whereby nine major phenolic compounds and several relevant enzymes were identified. RESULTS: The results showed that the most resistant and susceptible walnut varieties were 'Xiluo 2' and 'Xifu 2' respectively. The reaction of walnut to Xaj was characterized by the early accumulation of phenolic compounds in the infected site. After inoculation with Xaj, we found that the resistant variety 'Xiluo 2' show the significant differences with other varieties at different time points through the determination of related antioxidant enzymes such as catalase (CAT) and peroxidase (POD). Meanwhile, the phenylalanine ammonia lyase (PAL) of 'Xiluo 2' increased significantly at 8 day post infection (dpi) and made differences from the control samples, while other varieties changed little. And the polyphenol oxidase (PPO) was significantly higher than in the control at 16 dpi, maintaining the highest and the lowest activity in 'Xiluo 2' and 'Xifu 2' respectively. It was also found that the content of protocatechuic acid in all cultivars increased significantly at 4 dpi, and 'Xiluo 2' was significantly higher than that of the control. In the early stage of the disease, ferulic acid content increased significantly in 'Xiluo 2'. CONCLUSION: Our findings confirmed that the metabolism of phenolic compounds and related defense enzymes are of great significance in the response of walnut to Xaj.


Asunto(s)
Juglans , Juglans/metabolismo , Nueces/metabolismo , Fenoles/metabolismo
12.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142312

RESUMEN

Salmonella enterica serovar Infantis (S. Infantis) is an intracellular bacterial pathogen. It is prevalent but resistant to antibiotics. Therefore, the therapeutic effect of antibiotics on Salmonella infection is limited. In this study, we used the piglet diarrhea model and the Caco2 cell model to explore the mechanism of probiotic Lactobacillus johnsonii L531 (L. johnsonii L531) against S. Infantis infection. L. johnsonii L531 attenuated S. Infantis-induced intestinal structural and cellular ultrastructural damage. The expression of NOD pathway-related proteins (NOD1/2, RIP2), autophagy-related key proteins (ATG16L1, IRGM), and endoplasmic reticulum (ER) stress markers (GRP78, IRE1) were increased after S. Infantis infection. Notably, L. johnsonii L531 pretreatment not only inhibited the activation of the above signaling pathways but also played an anti-S. Infantis infection role in accelerating autophagic degradation. However, RIP2 knockdown did not interfere with ER stress and the activation of autophagy induced by S. Infantis in Caco2 cells. Our data suggest that L. johnsonii L531 pretreatment alleviates the intestinal damage caused by S. Infantis by inhibiting NOD activation and regulating ER stress, as well as promoting autophagic degradation.


Asunto(s)
Estrés del Retículo Endoplásmico , Salmonella enterica , Animales , Antibacterianos , Autofagia , Proteínas Relacionadas con la Autofagia , Células CACO-2 , Humanos , Proteínas Serina-Treonina Quinasas , Porcinos
13.
Plant Genome ; 15(3): e20229, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35904050

RESUMEN

Walnut (Juglans regia L.) is an important woody oil plant and will be affected by abiotic and biological stress during its growth and development. The WD-repeat (WD40) protein is widely involved in plant growth, development, metabolism, and abiotic stress response. To explore the stress response mechanism of walnut, based on the complete sequencing results of the walnut genome, this study identified and analyzed the physiological, biochemical, genetic structure, and conservative protein motifs of 42 JrWD40 genes, whose expression to abnormal temperature were tested to predict the potential biological function. The results showed that the open reading frame (ORF) of theseWD40 genes were 807-2,460 bp, encoding peptides were 29,610.55-90,387.98 Da covering 268-819 amino acids, as well as 12-112 phosphorylation sites. JrWD40 proteins were highly conserved with four to five WD40 domains and shared certain similarity to WD40 proteins from Arabidopsis thaliana (L.) Heynh. JrWD40 genes can be induced to varying degrees by low and high temperature treatments. JrWD40-32, JrWD40-27, JrWD40-35, and JrWD40-21 are affected by high temperature more seriously and their expression levels are higher; while JrWD40-37, JrWD40-26, JrWD40-20, JrWD40-24, and other genes are inhibited under low temperature stress. JrWD40-40, JrWD40-28, and JrWD40-18 were first suppressed with low expression, while as the treatment time prolonging, the expression level was increased under cold condition. JrWD40-14, JrWD40-18, JrWD40-34, and JrWD40-3 displayed strong transcriptions response to both heat and cold stress. These results indicated that JrWD40 genes can participate in walnut adaptation to adversity and can be used as important candidates for walnut resistance molecular breeding.


Asunto(s)
Arabidopsis , Juglans , Aminoácidos , Juglans/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética
14.
Front Immunol ; 13: 915246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874683

RESUMEN

Cytokines and cytokine receptors are important mediators in immunity and cancer development. Interleukin 22 (IL22) is one of the most important cytokines which has protumor effect. Given that common and specific roles of cytokines/receptors in multiple cancers, we conducted a pan-cancer study to investigate the role of IL22RA1 in cancer using The Cancer Genome Atlas (TCGA) database. Notably, we found IL22RA1 transcript was upregulated in 11 cancer types compared with their corresponding control. The mRNA expression level of IL22RA1 was highest in the pancreas among tumor tissues. The higher expression of IL22RA1 was associated with worse overall survival rate in patients. A total of 30 IL22RA1-correlated genes (e.g. IL17D, IL22RA2, IL20RB, IL10RA, IL10RB, TSLP and TYK2) are involved in the JAK/STAT pathway which promotes tumor progression. The upregulation of IL22RA1 in tumors was correlated with immune cell infiltration level. Higher expression of IL22RA2, IL20RB, IL10RA, IL10RB, TSLP, TYK2, STAT1 and STAT3 was associated with decreased overall survival rate in patients. IL22RA1 mutation was observed more in uterine cancer and melanoma compared with the other cancer types. Deactivation of IL22RA1 induced a lot of changes in gene expression. IL22RA1 mutants had upregulated DNA damage/repair genes in uterine cancer, whereas downregulated genes in the FoxO signaling pathway. In melanoma, mutation of IL22RA1 can upregulate the HIF signaling pathway but downregulate metabolic pathways. Our study suggests that IL22RA1/JAK/STAT signaling can be an important target for cancer treatment.


Asunto(s)
Melanoma , Neoplasias Uterinas , Citocinas/metabolismo , Femenino , Humanos , Quinasas Janus/metabolismo , Receptores de Interleucina/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal
15.
Front Microbiol ; 13: 871581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592006

RESUMEN

Heavy metal resistant bacteria play an important role in the metal biogeochemical cycle in soil, but the benefits of microbial oxidation for plants and soil have not been well-documented. The purpose of this study was to explore the contribution of two Bacillus spp. to alleviate the antimony (Sb) toxicity in plants, and, then, to propose a bioremediation method for Sb contaminated soil, which is characterized by environmental protection, high efficiency, and low cost. This study explored the effects of Bacillus cereus HM5 and Bacillus thuringiensis HM7 inoculation on Broussonetia papyrifera and soil were evaluated under controlled Sb stressed conditions (0 and 100 mmol/L, antimony slag) through a pot experiment. The results show that the total root length, root volume, tips, forks, crossings, and root activities of B. papyrifera with inoculation are higher than those of the control group, and the strains promote the plant absorption of Sb from the soil environment. Especially in the antimony slag treatment group, B. cereus HM5 had the most significant effect on root promotion and promoting the absorption of Sb by B. papyrifera. Compared with the control group, the total root length, root volume, tips, forks, crossings, and root activities increased by 64.54, 70.06, 70.04, 78.15, 97.73, and 12.95%, respectively. The absorption of Sb by root, stem, and leaf increased by 265.12, 250.00, and 211.54%, compared with the control group, respectively. Besides, both B. cereus HM5 and B. thuringiensis HM7 reduce the content of malondialdehyde, proline, and soluble sugars in plant leaves, keeping the antioxidant enzyme activity of B. papyrifera at a low level, and alleviating lipid peroxidation. Principal component analysis (PCA) shows that both B. cereus HM5 and B. thuringiensis HM7 are beneficial to the maintenance of plant root functions and the improvement of the soil environment, thereby alleviating the toxicity of Sb. Therefore, B. cereus HM5 and B. thuringiensis HM7 in phytoremediation with B. papyrifera is a promising inoculant used for bacteria-assisted phytoremediation on Sb contaminated sites.

16.
BMC Genomics ; 23(1): 190, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255828

RESUMEN

BACKGROUND: Walnuts (Juglans regia L.) are known for their nutrient-rich nuts and are one of the important economic tree species in the world. However, due to global warming and soil salinization, walnuts suffer from various abiotic stresses. TIFY (TIF[F/Y]XG) proteins play an essential role in the growth and development of plants, signal transduction, and stress response in plants. At present, although the TIFY gene family of a number of plants has been identified and studied, how TIFY takes part in stress tolerance remains obscure and many functions of TIFY require further investigation. RESULT: In this study, twenty-one TIFY transcription factors were identified in the walnut genome database, and they were divided into four subfamilies (TIFY, JAZ, ZML, and PPD) by bioinformatics analysis. Chromosome location revealed tandem duplication of some genes. Phylogenetic tree analysis showed JrTIFYs were closely related to the TIFY gene family of Arabidopsis thaliana (A. thaliana). qRT-PCR (quantitative real-time PCR) analysis revealed the TIFY genes have different expression patterns in 'Qingxiang' and 'Xiangling' walnut varieties under drought, heat, and salt stress. JAZ subfamily was more expressed in different abiotic stress than other subfamilies. The expressions of JrTIFY14 under heat and salt stress were significantly higher than those under drought stress. However, the expression of JrTIFYs was not significant in 'Xiangling'. CONCLUSION: This study reveals the TIFY gene family plays an important role in walnuts facing abiotic stresses and provides a theoretical basis for walnut breeding.


Asunto(s)
Juglans , Regulación de la Expresión Génica de las Plantas , Juglans/genética , Familia de Multigenes , Nueces/metabolismo , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
17.
ACS Appl Mater Interfaces ; 14(8): 10998-11005, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188368

RESUMEN

A new three-dimensional (3D) printing gel is developed to construct hierarchically porous ceramics with adjustable millimeter-, micrometer-, and nanometer-scale size for application in thermal management. Not only does the gel based on supramolecular micelles exhibit excellent DIW 3D printability but also the supramolecular micelles act as templates that can precisely control the structure of micrometer-scale pores. The effect of millimeter- and µmicrometer-scale size on properties of porous ceramics is investigated in detail. The 3D-printed ceramic foam with millimeter-scale pores and smaller micrometer-scale pores shows better thermal insulation and lower compressive strength. For the thermal insulation, the local temperature of a chip exposed to contact heat is only 34.2 °C in the presence of a printed foam cap with a pore size of 41.5 µm, while the local temperature is 54.8 °C in the absence of the printed foam cap. The study provides a new method to construct hierarchically porous alumina ceramics with precisely tunable size, avoiding the issues of subtractive manufacturing and opening up new applications in portable devices or consumer electronics.

18.
J Invest Dermatol ; 142(5): 1381-1390.e11, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34808237

RESUMEN

Bile acids (BAs), produced in the liver and further transformed in the gut, are cholesterol-derived molecules involved in essential physiological processes. Recent studies suggest that BAs regulate T helper 17 cell function, but the underlying mechanism of this action and their therapeutic value in disease models remains unclear. Using an IL-23 minicircle DNA-based murine model of psoriasiform dermatitis, we showed that oral administration of secondary BAs, including lithocholic acid (LCA), deoxycholic acid, and 3-oxoLCA, significantly improved psoriasiform dermatitis without inducing apparent hepatotoxicity. Of the BAs tested, LCA possessed the greatest potency in treating psoriasiform dermatitis. Intravenous administration of LCA at a much lower dosage (compared with oral treatment) showed a comparable antipsoriatic effect and markedly suppressed the IL-17A response. Ex vivo experiments revealed that LCA reduced IL-17A production in IL-23-stimulated murine T cells in the absence of BA receptors TGR5 or FXR. Strikingly, BAs inhibited CCL20 expression in keratinocytes, which led to reduced migration of CCR6-expressing Jurkat cells cultured in the conditioned medium of stimulated keratinocytes. Thus, BAs improve psoriasiform dermatitis with minimal toxicity via direct inhibition of IL-17A production and blockade of CCL20-mediated trafficking, supporting the potential use of BAs in psoriasis.


Asunto(s)
Eccema , Psoriasis , Animales , Ácidos y Sales Biliares/uso terapéutico , Quimiocina CCL20 , Humanos , Interleucina-17/metabolismo , Interleucina-23 , Ratones , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo , Receptores CCR6
19.
PeerJ ; 9: e12429, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820183

RESUMEN

BACKGROUND: Walnut is an important economic tree species with prominent economic value and ecological functions. However, in recent years, walnuts have become susceptible to drought stress, resulting in a decline in comprehensive benefits. Therefore, it is necessary to identify the regulatory molecular mechanism associated with walnut response to drought. In many plants, ethylene responsive factor (ERF) gene family plays important roles in response to biotic and abiotic stress, especial drought. Therefore, the identification and characterisation of walnut ERF genes will benefit walnut with regard to the clarification of drought response mechanism as well as the management, production, and quality of plantations. METHODS: 'ERF' was compared against the walnut transcriptome, and the JrERFs with a complete open reading frame (ORF) were identified by ORF Finder. The molecular weights, amino acid residues, and theoretical isoelectric point (pI) were predicted by ExPASy. The distribution of JrERFs in chromosome locations was determined based on walnut genome data from NCBI. The intron-exon structures and conserved domains were analysed using Gene Structure Display Server 2.0 and CD-Search, accordingly. Multi-sequence alignment and a phylogenetic tree were constructed by ClustalX2.1 and MEGA7, respectively. The conserved motifs were acquired using MEME. Total RNA was isolated using the cetyltrimethylammonium ammonium bromide (CTAB) method (Yang et al., 2018). Gene expression was determined by using real-time quantitative polymerase chain reaction (qRT-PCR) analysis and calculated according to the 2-ΔΔCT method (Livak & Schmittgen, 2001). RESULTS: A total of 44 JrERFs were identified from the walnut transcriptome, whose ORFs were 450-1,239 bp in length. The molecular weights of the JrERF proteins (consisting 149-412 amino acids) were 16.81-43.71 kDa, with pI ranging from 4.8 (JrERF11) to 9.89 (JrERF03). The JrERFs can be divided into six groups (B1-B6), and among the groups, B6 contained the most number of members. Each JrERF contained 1-6 motifs and each motif comprised 9-50 amino acids. Among the motifs, motif1, motif2, and motif3 were the most abundant. More than 40% of JrERFs were up-regulated continuously when subjected to ethephon (ETH), PEG6000, and PEG6000+ETH treatments. Of all the JrERFs, JrERF11 showed the highest expression. Therefore, we conclude that walnut ERF genes are highly conserved and involved in the regulation of drought response in the presence of ETH. JrERFs are possibly important candidate genes for molecular breeding; hence, the findings of this study provides the theoretical basis for further investigation of ERF genes in walnut and other species.

20.
Ecotoxicol Environ Saf ; 228: 112945, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34737155

RESUMEN

Juglans regia is a world-famous woody oil plant, whose yield and quality are affected by drought stress. Ethylene-responsive factors (ERFs) play vital role in plant stress response. In current study, to comprehend the walnut molecular mechanism of drought stress response, an ERF transcription factor was clarified from J. regia (JrERF2-2) and its potential function mechanism to drought was clarified. The results showed that JrERF2-2 could be induced significantly by drought. The transgenic Arabidopsis over-expression of JrERF2-2 displayed enhanced growth, antioxidant enzyme vitalities, reactive oxygen species scavenging and proline produce under drought stress. Especial the glutathione-S-transferase (GST) activity and most GST genes' transcription were elevated obviously. Yeast one-hybrid (Y1H) and co-transient expression (CTE) methods revealed that JrERF2-2 could recognize JrGST4, JrGST6, JrGST7, JrGST8, and JrGSTF8 by binding to GCC-box, and recognize JrGST11, JrGST12, and JrGSTN2 by binding to DRE motif. Meanwhile, the binding activity was strengthened by drought stress. Moreover, JrERF2-2 could interact with JrWRKY7 to promote plant drought tolerance; JrWRKY7 could also distinguish JrGST4, JrGST7, JrGST8, JrGST11, JrGST12, and JrGSTF8 via binding to W-Box motif. These results suggested that JrERF2-2 could effectively improve plant drought tolerance through interacting with JrWRKY7 to control the expression of GSTs. JrERF2-2 is a useful plant representative gene for drought response in molecular breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA