RESUMEN
The widespread use of mobile devices and laptops has replaced traditional paper-based learning and the question of how the brain efficiency of digital tablet-based learning differs from that of paper-based learning remains unclear. The purpose of this study was to investigate the difference in brain efficiency for learning between paper-based and digital tablet-based learning by measuring activity in the prefrontal cortex (PFC) using functional near-infrared spectroscopy. Thirty-two subjects were randomly assigned to the paper-based learning or the digital tablet-based learning group. Subjects in each group performed a memory task that required memorizing a three-minute novel (encoding phase) on a paper or digital tablet, followed by a test in which they answered four multiple-choice questions based on the novel's content. To compare both groups, behavioral performance on the test (retrieval phase) and activity in the PFC were measured. As a result, no significant difference in behavioral performance between both groups was observed (p > 0.05). However, the paper-based learning group showed significantly lower activity in the PFC in the encoding phase than the digital tablet-based learning group (p < 0.05) but not in the retrieval phase. The current study demonstrated that brain efficiency in encoding is higher in subjects with paper-based learning than those with digital tablet-based learning. This finding has important implications for education, particularly in terms of the pros and cons of electronic document-based learning.