Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
J Hazard Mater ; 474: 134816, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38850928

RESUMEN

Polyethylene microplastics (PE MPs) are the main MPs in agricultural soils and undergo oxidation upon environmental exposure. However, the influence of MP oxidation on phytotoxicity (especially for crop fruit) is still limited. This study aimed to explore the effect of PE MP oxidation on crop toxicity. Herein, a combination of plant phenotyping, metabolomic, and transcriptomic approaches was used to evaluate the effects of low-oxidation PE (LOPE) and high-oxidation PE (HOPE) on wheat growth, grain quality, and related molecular mechanisms using pot experiments. The results showed that HOPE induced a stronger inhibition of wheat growth and reduction in protein content and mineral elements than LOPE. This was accompanied by root ultrastructural damage and downregulation of carbohydrate metabolism, translation, nutrient reservoir activity, and metal ion binding gene expression. Compared with HOPE, LOPE activated a stronger plant defense response by reducing the starch content by 22.87 %, increasing soluble sugar content by 44.93 %, and upregulating antioxidant enzyme genes and crucial metabolic pathways (e.g., starch and sucrose, linoleic acid, and phenylalanine metabolism). The presence of PE MPs in the environment exacerbates crop growth inhibition and fruit quality deterioration, highlighting the need to consider the environmental and food safety implications of MPs in agricultural soils.

2.
Phytomedicine ; 131: 155758, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38843643

RESUMEN

BACKGROUND: The adaptor protein apoptosis-associated speck-like protein (ASC) containing a caspase recruitment domain (CARD) can be activated through pyrin domain (PYD) interactions between sensors and ASC, and through CARD interactions between caspase-1 and ASC. Although the majority of ternary inflammasome complexes depend on ASC, drugs targeting ASC protein remain scarce. After screening natural compounds from Isatidis Radixin, we found that tryptanthrin (TPR) could inhibit NLRP3-induced IL-1ß and caspase-1 production, but the underlying anti-inflammatory mechanisms remain to be elucidated. PURPOSE: The purpose of this study was to determine the impact of TPR on the NLRP3, NLRC4, and AIM2 inflammasomes and the underlying mechanisms. Additionally, the efficacy of TPR was analysed in the further course of methionine- and choline-deficient (MCD)-induced NASH and lipopolysaccharide (LPS)-induced sepsis models of mice. METHODS: In vitro studies used bone marrow-derived macrophages to assess the anti-inflammatory activity of TPR, and the techniques included western blot, testing of intracellular K+ and Ca2+, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), co-immunoprecipitation, ASC oligomerization assay, surface plasmon resonance (SPR), and molecular docking. We used LPS-induced sepsis models and MCD-induced NASH models in vivo to evaluate the effectiveness of TPR in inhibiting inflammatory diseases. RESULTS: Our observations suggested that TPR could inhibit NLRP3, NLRC4, and AIM2 inflammasome activation. As shown in a mouse model of inflammatory diseases caused by MCD-induced NASH and LPS-induced sepsis, TPR significantly alleviated the progression of diseases. TPR interrupted the interactions between ASC and NLRP3/NLRC4/AIM2 in the co-immunoprecipitation experiment, and stable binding of TPR to ASC was also evident in SPR experiments. The underlying mechanisms of anti-inflammatory activities of TPR might be associated with targeting ASC, in particular, PYD domain of ASC. CONCLUSION: In general, the requirement for ASC in multiple inflammasome complexes makes TPR, as a novel broad-spectrum inflammasome inhibitor, potentially useful for treating a wide range of multifactorial inflammasome-related diseases.

3.
Hum Vaccin Immunother ; 20(1): 2364519, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38880868

RESUMEN

Mucosal immunity plays a crucial role in combating and controlling the spread of highly mutated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recombinant subunit vaccines have shown safety and efficacy in clinical trials, but further investigation is necessary to evaluate their feasibility as mucosal vaccines. This study developed a SARS-CoV-2 mucosal vaccine using spike (S) proteins from a prototype strain and the omicron variant, along with a cationic chitosan adjuvant, and systematically evaluated its immunogenicity after both primary and booster immunization in mice. Primary immunization through intraperitoneal and intranasal administration of the S protein elicited cross-reactive antibodies against prototype strains, as well as delta and omicron variants, with particularly strong effects observed after mucosal vaccination. In the context of booster immunization following primary immunization with inactivated vaccines, the omicron-based S protein mucosal vaccine resulted in a broader and more robust neutralizing antibody response in both serum and respiratory mucosa compared to the prototype vaccine, enhancing protection against different variants. These findings indicate that mucosal vaccination with the S protein has the potential to trigger a broader and stronger antibody response during primary and booster immunization, making it a promising strategy against respiratory pathogens.


Asunto(s)
Administración Intranasal , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Ratones , Inmunización Secundaria/métodos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Femenino , Inmunidad Mucosa , Inmunogenicidad Vacunal , Reacciones Cruzadas/inmunología , Quitosano/inmunología , Quitosano/administración & dosificación , Adyuvantes de Vacunas/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación
4.
Endocrine ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884928

RESUMEN

OBJECTIVE: To develop and validate a nomogram combining radiomics and pathology features to distinguish between aldosterone-producing adenomas (APAs) and nonfunctional adrenal adenomas (NF-AAs). METHODS: Consecutive patients diagnosed with adrenal adenomas via computed tomography (CT) or pathologic analysis between January 2011 and November 2022 were eligible for inclusion in this retrospective study. CT images and hematoxylin & eosin-stained slides were used for annotation and feature extraction. The selected radiomics and pathology features were used to develop a risk model using various machine learning models, and the area under the receiver operating characteristic curve (AUC) was determined to evaluate diagnostic performance. The predicted results from radiomics and pathology features were combined and visualized using a nomogram. RESULTS: A total of 211 patients (APAs, n = 59; NF-AAs, n = 152) were included in this study, with patients randomly divided into either the training set or the testing set at a ratio of 8:2. The ExtraTrees model yielded a sensitivity of 0.818, a specificity of 0.733, and an accuracy of 0.756 (AUC = 0.817; 95% confidence interval [CI]: 0.675-0.958) in the radiomics testing set and a sensitivity of 0.999, a specificity of 0.842, and an accuracy of 0.867 (AUC = 0.905, 95% CI: 0.792-1.000) in the pathology testing set. A nomogram combining radiomics and pathology features demonstrated a strong performance (AUC = 0.912; 95% CI: 0.807-1.000). CONCLUSION: A nomogram combining radiomics and pathology features demonstrated strong predictive accuracy and discrimination capability. This model may help clinicians to distinguish between APAs and NF-AAs.

5.
Acta Radiol ; : 2841851241251446, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767055

RESUMEN

BACKGROUND: You Only Look Once version 5 (YOLOv5), a one-stage deep-learning (DL) algorithm for object detection and classification, offers high speed and accuracy for identifying targets. PURPOSE: To investigate the feasibility of using the YOLOv5 algorithm to non-invasively distinguish between aldosterone-producing adenomas (APAs) and non-functional adrenocortical adenomas (NF-ACAs) on computed tomography (CT) images. MATERIAL AND METHODS: A total of 235 patients who were diagnosed with ACAs between January 2011 and July 2022 were included in this study. Of the 215 patients, 81 (37.7%) had APAs and 134 (62.3%) had NF-ACAs' they were randomly divided into either the training set or the validation set at a ratio of 9:1. Another 20 patients, including 8 (40.0%) with APA and 12 (60.0%) with NF-ACA, were collected for the testing set. Five submodels (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) of YOLOv5 were trained and evaluated on the datasets. RESULTS: In the testing set, the mAP_0.5 value for YOLOv5x (0.988) was higher than the values for YOLOv5n (0.969), YOLOv5s (0.965), YOLOv5m (0.974), and YOLOv5l (0.983). The mAP_0.5:0.95 value for YOLOv5x (0.711) was also higher than the values for YOLOv5n (0.587), YOLOv5s (0.674), YOLOv5m (0.671), and YOLOv5l (0.698) in the testing set. The inference speed of YOLOv5n was 2.4 ms in the testing set, which was the fastest among the five submodels. CONCLUSION: The YOLOv5 algorithm can accurately and efficiently distinguish between APAs and NF-ACAs on CT images, especially YOLOv5x has the best identification performance.

6.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792047

RESUMEN

Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT2A receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[14C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis. Metabolites formed in human liver microsomes could be covered by animal species. 7-16 is mainly metabolized through mono-oxidation (M470-2) and N-demethylation (M440), and the CYP3A4 isozyme was responsible for both metabolic reactions. Based on the excretion data in bile and urine, the absorption rate of 7-16 was at least 74.7%. 7-16 had weak inhibition on P-glycoprotein and no effect on the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 transporters. The comprehensive pharmacokinetic properties indicate that 7-16 deserves further development as a new treatment drug for PDP.


Asunto(s)
Microsomas Hepáticos , Enfermedad de Parkinson , Humanos , Animales , Ratas , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Microsomas Hepáticos/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Masculino , Agonistas del Receptor de Serotonina 5-HT2/farmacología
7.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648384

RESUMEN

Animal groups exhibit various captivating movement patterns, which manifest as intricate interactions among group members. Several models have been proposed to elucidate collective behaviors in animal groups. These models achieve a certain degree of efficacy; however, inconsistent experimental findings suggest insufficient accuracy. Experiments have shown that some organisms employ a single information channel and visual lateralization to glean knowledge from other individuals in collective movements. In this study, we consider individuals' visual lateralization and a single information channel and develop a self-propelled particle model to describe the collective behavior of large groups. The results suggest that homogeneous visual lateralization gives the group a strong sense of cohesiveness, thereby enabling diverse collective behaviors. As the overlapping field grows, the cohesiveness gradually dissipates. Inconsistent visual lateralization among group members can reduce the cohesiveness of the group, and when there is a high degree of heterogeneity in visual lateralization, the group loses their cohesiveness. This study also examines the influence of visual lateralization heterogeneity on specific formations, and the results indicate that the directional migration formation is responsive to such heterogeneity. We propose an information network to portray the transmission of information within groups, which explains the cohesiveness of groups and the sensitivity of the directional migration formation.


Asunto(s)
Conducta Animal , Animales , Conducta Animal/fisiología , Modelos Biológicos , Lateralidad Funcional/fisiología , Conducta Social , Percepción Visual/fisiología , Visión Ocular/fisiología
8.
Eur J Med Chem ; 271: 116400, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38626524

RESUMEN

The androgen receptor AR antagonists, such as enzalutamide and apalutamide, are efficient therapeutics for the treatment of prostate cancer (PCa). Even though they are effective at first, resistance to both drugs occurs frequently. Resistance is mainly driven by aberrations of the AR signaling pathway including AR gene amplification and the expression of AR splice variants (e.g. AR-V7). This highlights the urgent need for alternative therapeutic strategies. Here, a total of 24 compounds were synthesized and biologically evaluated to disclose compound 20i, exhibiting potent AR antagonistic activities (IC50 = 172.85 ± 21.33 nM), promising AR/AR-V7 protein degradation potency, and dual targeting site of probably AR (ligand-binding domain, LBD and N-terminal domain, NTD). It potently inhibits cell growth with IC50 values of 4.87 ± 0.52 and 2.07 ± 0.34 µM in the LNCaP and 22RV1 cell lines, respectively, and exhibited effective tumor growth inhibition (TGI = 50.9 %) in the 22RV1 xenograft study. These data suggest that 20i has the potential for development as an AR/AR-V7 inhibitor with degradation ability to treat advanced prostate cancer.


Asunto(s)
Antineoplásicos , Proliferación Celular , Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Proliferación Celular/efectos de los fármacos , Receptores Androgénicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Relación Estructura-Actividad , Estructura Molecular , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Ratones , Ratones Desnudos , Proteolisis/efectos de los fármacos
9.
Phytomedicine ; 128: 155404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38507852

RESUMEN

BACKGROUND: The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon (IFN) genes (STING) pathway is critical in the innate immune system and can be mobilized by cytosolic DNA. The various inflammatory and autoimmune diseases progression is highly correlated with aberrant cGAS-STING pathway activation. While some cGAS-STING pathway inhibitor were identified, there are no drugs that can be applied to the clinic. Compound Danshen Dripping Pill (CDDP) has been successfully used in clinic around the world, but the most common application is limited to cardiovascular disease. Therefore, the purpose of the present investigation was to examine whether CDDP inhibits the cGAS-STING pathway and could be used as a therapeutic agent for multiple cGAS-STING-triggered diseases. METHODS: BMDMs, THP1 cells or Trex1-/- BMDMs were stimulated with various cGAS-STING-agonists after pretreatment with CDDP to detect the function of CDDP on IFN-ß and ISGs productionn. Next, we detect the influence on IRF3 and P65 nuclear translocation, STING oligomerization and STING-TBK1-IRF3 complex formation of CDDP. Additionally, the DMXAA-mediated activation mice model of cGAS-STING pathway was used to study the effects of CDDP. Trex1-/- mice model and HFD-mediated obesity model were established to clarify the efficacy of CDDP on inflammatory and autoimmune diseases. RESULTS: CDDP efficacy suppressed the IRF3 phosphorylation or the generation of IFN-ß, ISGs, IL-6 and TNF-α. Mechanistically, CDDP did not influence the STING oligomerization and IRF3-TBK1 and STING-IRF3 interaction, but remarkably eliminated the STING-TBK1 interaction, ultimately blocking the downstream responses. In addition, we also clarified that CDDP could suppress cGAS-STING pathway activation triggered by DMXAA, in vivo. Consistently, CDDP could alleviate multi-organ inflammatory responses in Trex1-/- mice model and attenuate the inflammatory disorders, incleding obesity-induced insulin resistance. CONCLUSION: CDDP is a specifically cGAS-STING pathway inhibitor. Furthermore, we provide novel mechanism for CDDP and discovered a clinical agent for the therapy of cGAS-STING-triggered inflammatory and autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Canfanos , Medicamentos Herbarios Chinos , Inflamación , Panax notoginseng , Salvia miltiorrhiza , Ratones , Ratones Endogámicos C57BL , Salvia miltiorrhiza/química , Panax notoginseng/química , Inmunidad Innata , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Transducción de Señal , Células THP-1 , Exodesoxirribonucleasas/genética , Fosfoproteínas/genética , Macrófagos , Interferón beta/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Factor de Transcripción ReIA/metabolismo , Transporte Activo de Núcleo Celular , Enfermedades Autoinmunes/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Dieta Alta en Grasa , Proteínas Serina-Treonina Quinasas/metabolismo , Humanos
10.
Heliyon ; 10(5): e27070, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468964

RESUMEN

Finding biomarker genes for complex diseases attracts persistent attention due to its application in clinics. In this paper, we propose a network-based method to obtain a set of biomarker genes. The key idea is to construct a gene co-expression network among sensitive genes and cluster the genes into different modules. For each module, we can identify its representative, i.e., the gene with the largest connectivity and the smallest average shortest path length to other genes within the module. We believe these representative genes could serve as a new set of potential biomarkers for diseases. As a typical example, we investigated Alzheimer's disease, obtaining a total of 16 potential representative genes, three of which belong to the non-transcriptome. A total of 11 out of these genes are found in literature from different perspectives and methods. The incipient groups were classified into two different subtypes using machine learning algorithms. We subjected the two subtypes to Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis with healthy groups and moderate groups, respectively. The two sub-type groups were involved in two different biological processes, demonstrating the validity of this approach. This method is disease-specific and independent; hence, it can be extended to classify other kinds of complex diseases.

11.
Entropy (Basel) ; 26(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38392416

RESUMEN

Correlations between exchange rates are valuable for illuminating the dynamics of international trade and the financial dynamics of countries. This paper explores the changing interactions of the US foreign exchange market based on detrended cross-correlation analysis. First, we propose an objective way to choose a time scale parameter appropriate for comparing different samples by maximizing the summed magnitude of all DCCA coefficients. We then build weighted signed networks under this optimized time scale, which can clearly display the complex relationships between different exchange rates. Our study shows negative cross-correlations have become pyramidally rare in the past three decades. Both the number and strength of positive cross-correlations have grown, paralleling the increase in global interconnectivity. The balanced strong triads are identified subsequently after the network centrality analysis. Generally, while the strong development links revealed by foreign exchange have begun to spread to Asia since 2010, Europe is still the center of world finance, with the euro and Danish krone consistently maintaining the closest balanced development relationship. Finally, we propose a fluctuation propagation algorithm to investigate the propagation pattern of fluctuations in the inferred exchange rate networks. The results show that, over time, fluctuation propagation patterns have become simpler and more predictable.

12.
World J Emerg Med ; 15(1): 41-46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188545

RESUMEN

BACKGROUND: Ischemic stroke refers to a disorder in the blood supply to a local area of brain tissue for various reasons and is characterized by high morbidity, mortality, and disability. Early reperfusion of brain tissue at risk of injury is crucial for the treatment of acute ischemic stroke. The purpose of this study was to evaluate comfort levels in managing acute stroke patients with hypoxemia who required endotracheal intubation after multidisciplinary in situ simulation training and to shorten the door-to-image time. METHODS: This quality improvement project utilized a comprehensive multidisciplinary in situ simulation exercise. A total of 53 participants completed the two-day in situ simulation training. The main outcome was the self-reported comfort levels of participants in managing acute stroke patients with hypoxemia requiring endotracheal intubation before and after simulation training. A 5-point Likert scale was used to measure participant comfort. A paired-sample t-test was used to compare the mean self-reported comfort scores of participants, as well as the endotracheal intubation time and door-to-image time on the first and second days of in situ simulation training. The door-to-image time before and after the training was also recorded. RESULTS: The findings indicated that in situ simulation training could enhance participant comfort when managing acute stroke patients with hypoxemia who required endotracheal intubation and shorten door-to-image time. For the emergency management of hypoxemia or tracheal intubation, the mean post-training self-reported comfort score was significantly higher than the mean pre-training comfort score (hypoxemia: 4.53±0.64 vs. 3.62±0.69, t= -11.046, P<0.001; tracheal intubation: 3.98±0.72 vs. 3.43±0.72, t= -6.940, P<0.001). We also observed a decrease in the tracheal intubation and door-to-image time and a decreasing trend in the door-to-image time, which continued after the training. CONCLUSION: Our study demonstrates that the implementation of in situ simulation training in a clinical environment with a multidisciplinary approach may improve the ability and confidence of stroke team members, optimize the first-aid process, and effectively shorten the door-to-image time of stroke patients with emergency complications.

13.
ACS Omega ; 9(1): 117-136, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222556

RESUMEN

The fracture distribution and internal control factors after the fracturing of unconventional oil and gas reservoirs determine the reservoir reforming effect to a large extent. Based on the research of global scholars on the influencing factors of fracture propagation, comprehensive theoretical model, and numerical simulation, this Review systematically discusses the influence of internal geological factors and external engineering factors of unconventional oil and gas reservoir on fracture propagation behavior and summarizes the current problems and development trends in fracture research. The results show the following: (1) The fracture propagation is a comprehensive process constrained by lithology and mineral composition, water saturation, nonhomogeneity, natural weak surface, and ground stress. (2) External engineering factors have a meaningful control effect on fracture propagation; the type and temperature of fracturing fluids can also change the mechanical properties of different rocks, thus affecting the fracture propagation pattern. (3) The existing fracture propagation models have certain limitations, and their computational reliability still needs to be further verified. (4) Numerical simulation can break through the limitations of physical simulation, but different simulation methods have different shortcomings and applicability. In the future, we should focus on: (1) finding parameters to quantitatively characterize heterogeneity at the 3D level, which is an important direction to study the effect of heterogeneity on fracture propagation; (2) introducing computerized methods to establish a geological model that considers multiple factors and combining it with numerical simulation software to study fracture propagation; (3) considering the characteristics of fluid-liquid-solid phase comprehensively, establishing a suitable THL coupling equation; (4) how the interaction mode of fracturing fracture is combined with the natural fracture geometry, and how the fracture is affected by fracturing engineering parameters such as fluid injection rate and viscosity of fracturing fluid; and (5) geology-engineering dynamic integration, which is an important direction to be carried out in the future.

14.
Eur J Med Chem ; 264: 115934, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007911

RESUMEN

Breast cancer is one of the most common malignant tumors in women worldwide, with the majority of cases showing expression of estrogen receptors (ERs). Although drugs targeting ER have significantly improved survival rates in ER-positive patients, drug resistance remains an unmet clinical need. Fulvestrant, which overcomes selective estrogen receptor modulator (SERM) and AI (aromatase inhibitor) resistance, is currently the only long-acting selective estrogen receptor degrader (SERD) approved for both first and second-line settings. However, it fails to achieve satisfactory efficacy due to its poor solubility. Therefore, we designed and synthesized a series of novel scaffold (THC) derivatives, identifying their activities as ER antagonists and degraders. G-5b, the optimal compound, exhibited binding, antagonistic, degradation or anti-proliferative activities comparable to fulvestrant in ER+ wild type and mutants breast cancer cells. Notably, G-5b showed considerably improved stability and solubility. Research into the underlying mechanism indicated that G-5b engaged the proteasome pathway to degrade ER, subsequently inhibiting the ER signaling pathway and leading to the induction of apoptosis and cell cycle arrest events. Furthermore, G-5b displayed superior in vivo pharmacokinetics and pharmacodynamics properties, coupled with a favorable safety profile in the MCF-7 tamoxifen-resistant (MCF-7/TR) tumor xenograft model. Collectively, G-5b has emerged as a highly promising lead compound, offering potent antagonistic and degradation activities, positioning it as a novel long-acting SERD worthy of further refinement and optimization.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Antagonistas del Receptor de Estrógeno , Fulvestrant , Antagonistas de Estrógenos/farmacología , Tamoxifeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Receptor alfa de Estrógeno/metabolismo
15.
Infect Immun ; 92(1): e0042123, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38047677

RESUMEN

Following an oral inoculation, Chlamydia muridarum descends to the mouse large intestine for long-lasting colonization. However, a mutant C. muridarum that lacks the plasmid-encoded protein pGP3 due to an engineered premature stop codon (designated as CMpGP3S) failed to do so even following an intrajejunal inoculation. This was because a CD4+ T cell-dependent immunity prevented the spread of CMpGP3S from the small intestine to the large intestine. In the current study, we found that mice deficient in IL-22 (IL-22-/-) allowed CMpGP3S to spread from the small intestine to the large intestine on day 3 after intrajejunal inoculation, indicating a critical role of IL-22 in regulating the chlamydial spread. The responsible IL-22 is produced by CD4+ T cells since IL-22-/- mice were rescued to block the CMpGP3S spread by donor CD4+ T cells from C57BL/6J mice. Consistently, CD4+ T cells lacking IL-22 failed to block the spread of CMpGP3S in Rag2-/- mice, while IL-22-competent CD4+ T cells did block. Furthermore, mice deficient in cathelicidin-related antimicrobial peptide (CRAMP) permitted the CMpGP3S spread, but donor CD4+ T cells from CRAMP-/- mice were still sufficient for preventing the CMpGP3S spread in Rag2-/- mice, indicating a critical role of CRAMP in regulating chlamydial spreading, and the responsible CRAMP is not produced by CD4+ T cells. Thus, the IL-22-producing CD4+ T cell-dependent regulation of chlamydial spreading correlated with CRAMP produced by non-CD4+ T cells. These findings provide a platform for further characterizing the subset(s) of CD4+ T cells responsible for regulating bacterial spreading in the intestine.


Asunto(s)
Infecciones por Chlamydia , Chlamydia muridarum , Interleucina-22 , Linfocitos T , Animales , Ratones , Linfocitos T CD4-Positivos , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Chlamydia muridarum/fisiología , Interleucina-22/inmunología , Intestino Grueso , Intestino Delgado , Ratones Endogámicos C57BL , Linfocitos T/inmunología
16.
J Ethnopharmacol ; 321: 117406, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952733

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Liuweiwuling Tablet (LWWL) is a patented Chinese medicine approved by the Chinese National Medical Products Administration (NMPA). Clinically, it is used to treat a range of liver diseases that precede hepatocellular carcinoma (HCC), including hepatitis, liver fibrosis and cirrhosis. LWWL is hypothesized to inhibit the inflammatory transformation of HCC, which may have a positive impact on the prevention and treatment of HCC. However, its exact mechanism of action remains unknown. AIM OF THE STUDY: To investigate how LWWL is effective in the treatment of HCC and to validate the pathways involved in this process. MATERIALS AND METHODS: An in vivo model of HCC induced by diethylnitrosamine (DEN) was established to study the effect of LWWL on the development of HCC. The rat serum was analyzed for aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transpeptidase (γ-GT). The rat liver tissues were stained with hematoxylin and eosin (HE) and Masson's trichrome for pathological analysis. Rat liver tissue was subjected to transcriptome sequencing. Expression of inflammatory and liver fibrosis-related factors in bone marrow-derived macrophages (BMDMs) and LX-2 cells was detected by QRT-PCR, ELISA and Western blot (WB). The expression of apoptosis and stemness genes in HepG2 and Huh7 cells was assessed through flow cytometry and QRT-PCR. Transcriptomics, network pharmacology, WB, and QRT-PCR were employed to validate the mechanisms associated with the amelioration of HCC development by LWWL. RESULTS: LWWL significantly reduced the severity of hepatitis and liver fibrosis, the expression of tumor stemness genes, and the incidence of HCC. In addition, LWWL inhibited the release of inflammatory substances and nuclear accumulation of P65 protein in BMDMs as well as the conversion of LX-2 cells to fibroblasts. LWWL inhibited the proliferation of HepG2 and Huh7 cells, including the initiation of apoptosis and the reduction of stemness gene expression. Importantly, LWWL regulates the PI3K/AKT/NF-κB pathway, which affects hepatic inflammation and cancer progression. CONCLUSION: LWWL inhibited the occurrence and development of HCC by modulating the severity of hepatitis and liver fibrosis, indicating the potential clinical relevance of LWWL in preventing and treating HCC.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis , Neoplasias Hepáticas , Ratas , Animales , Carcinoma Hepatocelular/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Cirrosis Hepática/metabolismo , Comprimidos
17.
Oncogene ; 43(4): 248-264, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38017133

RESUMEN

The over-activation of ERα signaling is regarded as the major driver for luminal breast cancers, which could be effective controlled via selective estrogen receptor modulators (SERM), such as tamoxifen. The endocrine resistance is still a challenge for breast cancer treatment, while recently studies implicate the post-translational modification on ERα play important roles in endocrine resistance. The stability of ERα protein and ERα transcriptome are subject to a balance between E3 ubiquitin ligases and deubiquitinases. Through deubiquitinases siRNA library screening, we discover PSMD14 as a critical deubiquitinase for ERα signaling and breast cancer progression. PSMD14 could facilitate breast cancer progression through ERα signaling in vitro and in vivo, while pharmaceutical inhibition of PSMD14 via Thiolutin could block the tumorigenesis in breast cancer. In endocrine resistant models, PSMD14 inhibition could de-stabilize the resistant form of ERα (Y537S) and restore tamoxifen sensitivity. Molecular studies reveal that PSMD14 could inhibition K48-linked poly-ubiquitination on ERα, facilitate ERα transcriptome. Interestingly, ChIP assay shows that ERα could bind to the promoter region of PSMD14 and facilitate its gene transcription, which indicates PSMD14 is both the upstream modulator and downstream target for ERα signaling in breast cancer. In general, we identified a novel positive feedback loop between PSMD14 and ERα signaling in breast cancer progression, while blockade of PSMD14 could be a plausible strategy for luminal breast cancer.


Asunto(s)
Neoplasias de la Mama , Complejo de la Endopetidasa Proteasomal , Transactivadores , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Tamoxifeno/farmacología , Transactivadores/genética , Transactivadores/metabolismo
18.
J Exp Clin Cancer Res ; 42(1): 297, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950281

RESUMEN

BACKGROUND: The Hippo pathway is crucial in organ size control and tumorigenesis. Dysregulation of the Hippo/YAP axis is commonly observed in gastric cancer, while effective therapeutic targets for the Hippo/YAP axis are lacking. Identification of reliable drug targets and the underlying mechanisms that could inhibit the activity of the Hippo/YAP axis and gastric cancer progression is urgently needed. METHODS: We used several gastric cancer cell lines and xenograft models and performed immunoblotting, qPCR, and in vivo studies to investigate the function of CXCR7 in gastric cancer progression. RESULTS: In our current study, we demonstrate that the membrane receptor CXCR7 (C-X-C chemokine receptor 7) is an important modulator of the Hippo/YAP axis. The activation of CXCR7 could stimulate gastric cancer cell progression through the Hippo/YAP axis in vitro and in vivo, while pharmaceutical inhibition of CXCR7 via ACT-1004-1239 could block tumorigenesis in gastric cancer. Molecular studies revealed that the activation of CXCR7 could dephosphorylate YAP and facilitate YAP nuclear accumulation and transcriptional activation in gastric cancer. CXCR7 functions via G-protein Gαq/11 and Rho GTPase to activate YAP activity. Interestingly, ChIP assays showed that YAP could bind to the promoter region of CXCR7 and facilitate its gene transcription, which indicates that CXCR7 is both the upstream signalling and downstream target of the Hippo/YAP axis in gastric cancer. CONCLUSION: In general, we identified a novel positive feedback loop between CXCR7 and the Hippo/YAP axis, and blockade of CXCR7 could be a plausible strategy for gastric cancer.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Neoplasias Gástricas , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
19.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38006013

RESUMEN

Of all of the components in SARS-CoV-2 inactivated vaccines, nucleocapsid protein (N) is the most abundant and highly conserved protein. However, the function of N in these vaccines, especially its influence on the targeted spike protein's response, remains unknown. In this study, the immunization of mice with the N protein alone was shown to reduce the viral load, alleviating pulmonary pathological lesions after challenge with the SARS-CoV-2 virus. In addition, co-immunization and pre-immunization with N were found to induce higher S-specific antibody titers rather than compromise them. Remarkably, the same trend was also observed when N was administered as the booster dose after whole inactivated virus vaccination. N-specific IFN-γ-secreting T cell response was detected in all groups and exhibited a certain relationship with S-specific IgG antibody improvements. Together, these data indicate that N has an independent role in vaccine-induced protection and improves the S-specific antibody response to inactivated vaccines, revealing that an interplay mechanism may exist in the immune responses to complex virus components.

20.
J Transl Med ; 21(1): 700, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805545

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a progressive and inflammatory subtype of nonalcoholic fatty liver disease (NAFLD) characterized by hepatocellular injury, inflammation, and fibrosis in various stages. More than 20% of patients with NASH will progress to cirrhosis. Currently, there is a lack of clinically effective drugs for treating NASH, as improving liver histology in NASH is difficult to achieve and maintain through weight loss alone. Hence, the present study aimed to investigate potential therapeutic drugs for NASH. METHODS: BMDMs and THP1 cells were used to construct an inflammasome activation model, and then we evaluated the effect of epalrestat on the NLRP3 inflammasome activation. Western blot, real-time qPCR, flow cytometry, and ELISA were used to evaluate the mechanism of epalrestat on NLRP3 inflammasome activation. Next, MCD-induced NASH models were used to evaluate the therapeutic effects of epalrestat in vivo. In addition, to evaluate the safety of epalrestat in vivo, mice were gavaged with epalrestat daily for 14 days. RESULTS: Epalrestat, a clinically effective and safe drug, inhibits NLRP3 inflammasome activation by acting upstream of caspase-1 and inducing ASC oligomerization. Importantly, epalrestat exerts its inhibitory effect on NLRP3 inflammasome activation by inhibiting the activation of aldose reductase. Further investigation revealed that the administration of epalrestat inhibited NLRP3 inflammasome activation in vivo, alleviating liver inflammation and improving NASH pathology. CONCLUSIONS: Our study indicated that epalrestat, an aldose reductase inhibitor, effectively suppressed NLRP3 inflammasome activation in vivo and in vitro and might be a new therapeutic approach for NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Aldehído Reductasa/uso terapéutico , Inflamación , Fibrosis , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA