Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Eur J Clin Pharmacol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102039

RESUMEN

PURPOSE: Based on the comparison of ramucirumab monoclonal antibody with control treatments in randomized controlled trials, this study aims to elucidate the role of ramucirumab monoclonal antibody in cancer therapy and its potential side effects, providing scientific evidence for clinical treatment. METHODS: PubMed, Embase, Cochrane, and Web of Science were searched systematically to obtain the trials on ramucirumab in the treatment of gastric or gastroesophageal junction (GEJ) adenocarcinoma up to April 13, 2023. We included randomized controlled trials (RCTs) evaluating the efficacy and safety of ramucirumab as monotherapy and in combination with other chemotherapy agents as interventions for treating gastric or gastroesophageal junction (GEJ) adenocarcinoma. RESULTS: After screening 2200 studies, we finally included 8 eligible studies (involving a total of 3,283 participants). Meta-analysis results showed that compared to the control group, ramucirumab monotherapy significantly improved overall survival (OS) (hazard ratio [HR] = 0.77, 95% confidence interval [CI] [0.67, 0.89]) and progression-free survival (PFS) (HR = 0.48, 95% CI [0.40, 0.58]). Similar results were obtained for ramucirumab combined with paclitaxel. In the treatment combining ramucirumab with paclitaxel, compared to monotherapy, three severe adverse reactions (grade ≥ 3) were observed with significantly increased risks (OR > 2). These include proteinuria (OR = 5.37, 95% CI [1.22, 23.54]), hypertension (OR = 4.02, 95% CI [2.63, 6.14]), and gastrointestinal perforation (OR = 4.64, 95% CI [1.00, 21.60]). Subgroup analysis further indicated that ramucirumab is effective in both non-East Asian and East Asian populations, with East Asian patients more prone to developing proteinuria, while having a lower incidence of hypertension. Additionally, ramucirumab demonstrated comparable efficacy between first-line and second-line treatments, with a higher incidence of proteinuria observed in second-line therapy. CONCLUSION: Ramucirumab significantly improves the prognosis of patients with gastric or gastroesophageal junction adenocarcinoma. When used in combination with paclitaxel, close monitoring of adverse reactions such as proteinuria (especially in East Asian populations), hypertension (especially in non-East Asian populations), and gastrointestinal perforation is essential.

2.
FASEB J ; 38(15): e23880, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39132919

RESUMEN

Long noncoding RNAs (lncRNAs) are strongly associated with glucose homeostasis, but their roles remain largely unknown. In this study, the potential role of lncRNA-Snhg3 in glucose metabolism was evaluated both in vitro and in vivo. Here, we found a positive relationship between Snhg3 and hepatic glycogenesis. Glucose tolerance improved in hepatocyte-specific Snhg3 knock-in (Snhg3-HKI) mice, while it worsened in hepatocyte-specific Snhg3 knockout (Snhg3-HKO) mice. Furthermore, hepatic glycogenesis had shown remarkable increase in Snhg3-HKI mice and reduction in Snhg3-HKO mice, respectively. Mechanistically, Snhg3 increased mRNA and protein expression levels of PPP1R3B through inducing chromatin remodeling and promoting the phosphorylation of protein kinase B. Collectively, these results suggested that lncRNA-Snhg3 plays a critical role in hepatic glycogenesis.


Asunto(s)
Hígado , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Hígado/metabolismo , Ratones Noqueados , Glucosa/metabolismo , Masculino , Hepatocitos/metabolismo , Ratones Endogámicos C57BL , Glucógeno Hepático/metabolismo
3.
Front Cell Dev Biol ; 12: 1411507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129785

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. At present, the treatment of OA includes drug therapy to relieve symptoms and joint replacement therapy for advanced OA. However, these palliatives cannot truly block the progression of the disease from the immunological pathogenesis of OA. In recent years, bone marrow mesenchymal stem cell (BMSC) transplantation has shown great potential in tissue engineering repair. In addition, many studies have shown that BMSC paracrine signals play an important role in the treatment of OA through immune regulation and suppressing inflammation. At present, the mechanism of inflammation-induced OA and the use of BMSC transplantation in joint repair have been reviewed, but the mechanism and significance of BMSC paracrine signals in the treatment of OA have not been fully reviewed. Therefore, this article focused on the latest research progress on the paracrine effects of BMSCs in the treatment of OA and the related mechanisms by which BMSCs secrete cytokines to inhibit the inflammatory response, regulate immune balance, and promote cell proliferation and differentiation. In addition, the application potential of BMSC-Exos as a new type of cell-free therapy for OA is described. This review aimed to provide systematic theoretical support for the clinical application of BMSC transplantation in the treatment of OA.

4.
Angew Chem Int Ed Engl ; : e202414452, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39205492

RESUMEN

All-soluble all-iron redox flow batteries (AIRFBs) are an innovative energy storage technology that offer significant financial benefits. Stable and affordable redox-active materials are essential for the commercialization of AIRFBs, yet the battery stability must be significantly improved to achieve practical value. Herein, ferrous complexes combined with the triisopropanolamine (TIPA) ligand are identified as promising anolytes to extend battery life by reducing cross-contamination due to a pronounced steric hindrance effect. The coordination structure and failure mechanism of our Fe-TIPA complexes were determined by molecular dynamics simulation and spectroscopic experiments. By coupling with [Fe(CN)6]4 -/3- , Fe-TIPA/Fe-CN AIRFBs retained excellent stability exceeding 1831 cycles at 80 mA·cm -2 , yielding an energy efficiency of ~80% and maintaining a steady discharge capacity. Moreover, the all-soluble electrolyte was tested in an industrial-scale Fe-TIPA/Fe-CN AIRFB prototype energy storage system, where an energy efficiency of 81.3% was attained. Given the abundance of iron resources, we model the TIPA AIRFB electrolyte cost to be as low as 32.37 $/kWh, which is significantly cheaper than the current commercial level. This work demonstrates that steric hindrance is an effective measure to extended battery life, facilitating the commercial development of affordable flow batteries.

5.
Bioresour Technol ; 407: 131092, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986879

RESUMEN

The extremely slow growth rate of anaerobic ammonia oxidation (anammox) bacteria limits full-scale application of anammox process worldwide. In this study, extracellular polymeric substances (EPS)-coated polypropylene (PP) carriers were prepared for biofilm formation. The biomass adhesion rate of EPS-PP carrier was 12 times that of PP carrier, and EPS-PP achieved significant enrichment of E. coli BY63. The 120-day continuous flow experiment showed that the EPS-PP carrier accelerated the formation of anammox biofilm, and the nitrogen removal efficiency increased by 10.5 %. In addition, the abundance of Candidatus Kuenenia in EPS-PP biofilm was 27.1%. Simultaneously, amino acids with high synthesis cost and the metabolites of glycerophospholipids related to biofilm formation on EPS-PP biofilm were significantly up-regulated. Therefore, EPS-PP carriers facilitated the rapid formation of anammox biofilm and promoted the metabolic activity of functional bacteria, which further contributed to the environmental and economic sustainability of anammox process.


Asunto(s)
Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Oxidación-Reducción , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Amoníaco/metabolismo , Polipropilenos , Nitrógeno/metabolismo , Consorcios Microbianos/fisiología , Bacterias/metabolismo , Anaerobiosis/fisiología , Biomasa , Escherichia coli/metabolismo
6.
J Ethnopharmacol ; 334: 118577, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019414

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is an oriental herb documented to treat many diseases, including obesity, hyperlipidemia, metabolic syndromes and aging. However, the anti-obesity mechanism of G. pentaphyllum remains poorly understood. AIM OF THE STUDY: To reveal the anti-obesity mechanism of G. pentaphyllum Extract (GPE) in High-Fat Diet (HFD)-induced obese mice through untargeted metabolomics, Real-Time Quantitative PCR (RT-qPCR), and immunohistochemical experiments. Additionally, to tentatively identify the active constituents through LC-MS/MS and molecular docking approaches. MATERIALS AND METHODS: GPE was prepared using ethanol reflux and purified by HP-20 macroporous resins. The components of GPE were identified by Liquid Chromatography- Mass Spectrometry (LC-MS) system. Forty-two C57BL/6 J mice were randomly and evenly divided into six groups, with seven mice in each group: the control group, obese model group, Beinaglutide group (positive control), and GPE low, medium, and high-dose groups (50 mg/kg, 100 mg/kg, and 200 mg/kg of 80% ethanol extract). Body weight, liver weight, blood glucose, blood lipids, and liver histopathological changes were assessed. Untargeted metabolomics was employed to characterize metabolic changes in obese mice after GPE treatment. The expression of genes related to differential metabolites was verified using Real-Time Quantitative PCR (RT-qPCR) and immunohistochemical experiments. The constituents with anti-obesity effects from GPE were tentatively identified through molecular docking approaches. RESULTS: A total of 17 compounds were identified in GPE. GPE significantly lowered body weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in obese mice and reduced liver weight and hepatic steatosis. Serum metabolomics identified 20 potential biomarkers associated with GPE treatment in obese mice, primarily related to tryptophan metabolism. GPE treatment downregulated the expression of Slc6a19 and Tph1 and upregulated Ucp1 expression. Molecular docking illustrated that compounds such as 20(R)-ginsenoside Rg3, Araliasaponin I, Damulin B, Gypenoside L, Oleifolioside B, and Tricin7-neohesperidoside identified in GPE exhibited favorable interaction with Tph1. CONCLUSION: The extract of G. pentaphyllum can inhibit the absorption of tryptophan and its conversion to 5-HT through the Slc6a19/Tph1 pathway, upregulating the expression of Ucp1, thereby promoting thermogenesis in brown adipose tissue, facilitating weight loss, and mitigating symptoms of fatty liver. Triterpenoids such as Araliasaponin I, identified in GPE, could be the potential inhibitor of Tph1 and responsible for the anti-obesity activities.


Asunto(s)
Fármacos Antiobesidad , Dieta Alta en Grasa , Etanol , Gynostemma , Metabolómica , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Obesidad , Extractos Vegetales , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Masculino , Obesidad/tratamiento farmacológico , Gynostemma/química , Fármacos Antiobesidad/farmacología , Ratones , Etanol/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología
7.
Front Psychol ; 15: 1412151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974108

RESUMEN

To examine the level of number line estimation (NLE) in Chinese children with respect to representations of both numerical (Arabic numerals) and non-numerical symbols (dots), a total of 192 Chinese preschoolers aged between 4 and 5 years participated in four different NLE tasks. These tasks were paired to evaluate the accuracy and patterns of children's estimations in both numerical and non-numerical symbol contexts. Our findings indicate that, for Chinese preschoolers, relatively precise numerical symbol representations begin to emerge as early as 4 years of age. The accuracy of number line estimates for both 4- and 5-year-old children gradually increases in tasks involving both numerical and non-numerical symbols. Additionally, the development and patterns observed in the number line estimates of 4- and 5-year-old Chinese preschoolers are similar in both numerical symbol and non-numerical symbol tasks. These results indicate that the initiation of relatively precise numerical symbol representation and the turning point in the developmental trajectory, where the relatively precise representation for numerical symbols surpasses that of non-numerical ones, occur earlier in Chinese children than in their Western counterparts.

8.
Anal Chim Acta ; 1318: 342912, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067911

RESUMEN

BACKGROUND: The accurate determination of iodine in seawater is essential to understanding its impact on the environment and human health. Inductively coupled plasma mass spectrometry (ICP-MS) is a widely used technique for elemental analysis due to its high sensitivity, speed, and low limit of detection (LOD). However, its capability in the detection of iodine in complex matrix samples is still limited by the low sample introduction efficiency of pneumatic nebulization and the high ionization energy of iodine. Dielectric barrier discharge microplasma-induced vapor generation (DBD-µPIVG) is a sample introduction technique that has been widely coupled with atomic spectrometry due to its high vapor generation efficiency, rapid reaction speed, high anti-interference capability, and environmental friendliness. RESULTS: A new method was developed for the rapid and sensitive determination of iodine using DBD-µPIVG coupled with ICP-MS. The DBD-µPIVG sample introduction technique can convert both iodide and iodate to their volatiles with a vapor generation efficiency of 70 %. The experimental conditions were optimized in detail, and the LOD for iodine was 0.04 µg L-1, which was lower compared to pneumatic nebulization and comparable to that after the extraction treatment. The relative standard deviation (RSD) obtained after 11 replicate determinations was 2.4%. Furthermore, the potential mechanism and anti-interference performance of the proposed method were also carefully investigated. SIGNIFICANCE: Compared to other analytical methods for iodine analysis, this approach is environmentally friendly, exhibits high anti-interference capability and enables accurate determination of iodine in complex matrix samples. The high vapor generation efficiency of DBD-µPIVG improves the sensitivity for iodine detection and expands the applicable elemental range of DBD-µPIVG. Finally, the proposed method was successfully applied to analyze the iodine content in seawater samples obtained from the Chinese coastal waters and retains great potential for assessing the distribution of iodine in different sea areas.

9.
J Pharm Biomed Anal ; 248: 116329, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959759

RESUMEN

A protocol for efficiently identifying ligands directly interacting with a target protein in complex extracts of medicinal herbs was proposed by combining an adapted 2D perfect-echo Carr-Purcell-Meiboom-Gill heteronuclear single quantum correlation (PE-CPMG HSQC) spectrum with metabolomic analysis. PE-CPMG HSQC can suppress the signal interference from the target protein, allowing more accurate peak quantification than conventional HSQC. Inspired from untargeted metabolomics, regions of interest (ROIs) are constructed and quantified for the mixture or complex extract samples with and without a target protein, and then a binding index (BI) of each ROI is determined. ROIs or corresponding peaks significantly perturbed by the presence of the target protein (BI ≥1.5) are detected as differential features, and potential binding ligands identified from the differential features can be equated with bioactive markers associated with the 'treatment' of the target protein. Quantifying ROI can inclusively report the ligand bindings to a target protein in fast, intermediate and slow exchange regimes on nuclear magnetic resonance (NMR) time scale. The approach was successfully implemented and identified Angoroside C, Cinnamic acid and Harpagoside from the extract of Scrophularia ningpoensis Hemsl. as ligands binding to peroxisome proliferator-activated receptor γ. The proposed 2D NMR-based approach saves excess steps for sample processing and has a higher chance of detecting the weaker ligands in the complex extracts of medicinal herbs. We expect that this approach can be applied as an alternative to mining the potential ligands binding to a variety of target proteins from traditional Chinese medicines and herbal extracts.


Asunto(s)
Metabolómica , Plantas Medicinales , Ligandos , Metabolómica/métodos , Plantas Medicinales/química , PPAR gamma/metabolismo , Extractos Vegetales/química , Extractos Vegetales/análisis , Unión Proteica
10.
J Hazard Mater ; 476: 135092, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38964040

RESUMEN

Methylisothiazolinone (MIT) is a widely used preservative and biocide to prevent product degradation, yet its potential impact on plant growth remains poorly understood. In this study, we investigated MIT's toxic effects on Arabidopsis thaliana root growth. Exposure to MIT significantly inhibited Arabidopsis root growth, associated with reduced root meristem size and root meristem cell numbers. We explored the polar auxin transport pathway and stem cell regulation as key factors in root meristem function. Our findings demonstrated that MIT suppressed the expression of the auxin efflux carrier PIN1 and major root stem cell regulators (PLT1, PLT2, SHR, and SCR). Additionally, MIT hindered root regeneration by downregulating the quiescent center (QC) marker WOX5. Transcriptome analysis revealed MIT-induced alterations in gene expression related to oxidative stress, with physiological experiments confirming elevated reactive oxygen species (ROS) levels and increased cell death in root tips at concentrations exceeding 50 µM. In summary, this study provides critical insights into MIT's toxicity on plant root development and regeneration, primarily linked to modifications in polar auxin transport and downregulation of genes associated with root stem cell regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Raíces de Plantas , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Regeneración/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Meristema/efectos de los fármacos , Tiazoles/toxicidad
11.
Skin Res Technol ; 30(7): e13790, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38932444

RESUMEN

BACKGROUND: The delicate periorbital region is susceptible to skin dehydration, wrinkles, and loss of elasticity. Thus, targeted and effective anti-aging interventions are necessary for the periorbital area. AIM: To evaluate the efficacy and safety of a new anti-aging eye cream formulated with the active complex (Yeast/rice fermentation filtrate, N-acetylneuraminic acid, palmityl tripeptide-1, and palmitoyl tetrapeptide-7). METHODS: The cell viability and expressions of key extracellular matrix (ECM) components of the active complex were evaluated using a human skin fibroblast model. In the 12-week clinical trial, skin hydration, elasticity, facial photographs, and collagen density following eye cream application were assessed using Corneometer, Cutometer, VISIA, and ultrasound device, respectively. Dermatologists and participants evaluated clinical efficacy and safety at baseline, and after 4, 8, and 12 weeks. RESULTS: PCR and immunofluorescent analyses revealed that the active complex significantly stimulated fibroblast proliferation (p < 0.05) and markedly promote the synthesis of collagen and elastin. Clinical findings exhibited a substantial enhancement in skin hydration (28.12%), elasticity (18.81%), and collagen production (54.99%) following 12 weeks of eye cream application. Dermatological evaluations and participants' assessments reported a significant improvement in skin moisture, roughness, elasticity, as well as fine lines and wrinkles by week 8. CONCLUSION: The new anti-aging eye cream, enriched with the active complex, demonstrates comprehensive rejuvenating effects, effectively addressing aging concerns in the periorbital area, coupled with a high safety profile.


Asunto(s)
Fibroblastos , Envejecimiento de la Piel , Crema para la Piel , Humanos , Envejecimiento de la Piel/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Femenino , Persona de Mediana Edad , Crema para la Piel/administración & dosificación , Adulto , Elasticidad/efectos de los fármacos , Colágeno , Supervivencia Celular/efectos de los fármacos , Elastina , Masculino , Piel/efectos de los fármacos , Piel/patología , Resultado del Tratamiento , Administración Tópica , Proliferación Celular/efectos de los fármacos , Anciano
12.
Heart Lung ; 68: 107-115, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943717

RESUMEN

BACKGROUND: Heart failure (HF) imposes a substantial burden on older adults, and healthy diets and lifestyles may bring with benefits. However, quantifiable studies on the dietary and lifestyle risk factors for HF are scant. The Oxidative Balance Score (OBS) reflects the oxidative stress status of dietary components and lifestyle factors, but its relationship with HF risk is unclear. OBJECTIVE: We aims to explore the association between OBS and the prevalence of HF. METHODS: Using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2018, the association between OBS and the HF prevalence was analyzed by weighted logistic regression and restricted cubic splines (RCS). Subgroup and sensitivity analyses assessed the stability of the results. RESULTS: The prevalence of HF in the cohort of 6238 older adults was 5.55 %. Compared to the lowest quintile, the adjusted ORs for HF in the highest quintile of OBS and lifestyle OBS were 0.57 (95 % CI: 0.33,0.97) and 0.21 (95 %CI: 0.09,0.50), respectively. The association between OBS and HF prevalence remained stable across different models and subgroups. RCS revealed a potential inflection point. Sensitivity analysis validated the negative association between OBS and HF prevalence, and the correlation analysis between OBS and serum γ-glutamyltransferase (γ-GGT) confirmed the reliability of the study design. CONCLUSION: The OBS is negatively associated with HF prevalence in older adults, and may help prevent HF in this population.

13.
Breast Cancer ; 31(4): 607-620, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38833118

RESUMEN

OBJECTIVE: Breast cancer is one of the most prevalent malignancies in women. Exosomes are important mediators of intercellular communication; however, their regulatory mechanisms in human umbilical vein endothelial cells (HUVECs) angiogenesis in breast cancer remain unknown. METHODS: We isolated and characterized breast cancer cell-derived exosomes and investigated their functions. Exosomal sequencing and the TCGA database were used to screen long non-coding RNA (lncRNA). In vitro and in vivo experiments were performed to investigate the role of exosomal lncRNA in HUVEC angiogenesis and tumor growth. Molecular methods were used to demonstrate the molecular mechanism of lncRNA. RESULTS: We demonstrated that breast cancer cell-derived exosomes promoted HUVEC proliferation, tube formation, and migration. Combining exosomal sequencing results with The Cancer Genome Atlas Breast Cancer database, we screened lncRNA small nucleolar RNA host gene 12 (SNHG12), which was highly expressed in breast cancer cells. SNHG12 was also upregulated in HUVECs co-cultured with exosome-overexpressed SNHG12. Moreover, overexpression of SNHG12 in exosomes increased HUVEC proliferation and migration, whereas deletion of SNHG12 in exosomes showed the opposite effects. In vivo experiments showed that SNHG12 knockdown in exosomes inhibited breast cancer tumor growth. Transcriptome sequencing identified MMP10 as the target gene of SNHG12. Functional experiments revealed that MMP10 overexpression promoted HUVEC angiogenesis. Mechanistically, SNHG12 blocked the interaction between PBRM1 and MMP10 by directly binding to PBRM1. Moreover, exosomal SNHG12 promoted HUVEC angiogenesis via PBRM1 and MMP10. CONCLUSIONS: In summary, our findings confirmed that exosomal SNHG12 promoted HUVEC angiogenesis via the PBRM1-MMP10 axis, leading to enhanced malignancy of breast cancer. Exosomal SNHG12 may be a novel therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Exosomas , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Patológica , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Exosomas/metabolismo , Exosomas/genética , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Patológica/metabolismo , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Angiogénesis
14.
J Hazard Mater ; 475: 134857, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38876017

RESUMEN

Interactions between positively charged amino-modified (APS) and negatively charged bare (BPS) polystyrene nanoplastics may cause heteroaggregation in aquatic environments. This study investigated the effects of particle concentration ratio, solution chemistry [electrolytes, pH, and natural organic matter (NOM)], and interaction sequence on their heteroaggregation kinetics. In the absence of electrolytes and NOM, the APS/BPS ratio for attaining maximum heteroaggregation rate (khetero) increased from APS/BPS= 3/7 to APS/BPS= 1/1 as pH increased from 4 to 10, indicating that electrostatic interactions dominated heteroaggregation. In the absence of NOM, khetero ranked APS/BPS= 2/3 > APS/BPS= 1/1 > APS/BPS= 3/2. Colloidal stability decreased linearly as pH increased from 4 to 8 at APS/BPS= 1/1, while diffusion-limited heteroaggregation persisted at pH 10. In NaCl solution, humic acid (HA) retarded heteroaggregation more effectively than sodium alginate (SA) via steric hindrance and weakening electrostatic interactions, following the modified Derjaguin-Landau-Verwey-Overbeek (MDLVO) theory. Compared with simultaneous interactions among APS, BPS, NaCl, and NOM, the NOM retardation effects on heteroaggregation weakened if delaying its interaction with others. In CaCl2 solution, the effects of NOM on heteroaggregation depended on counterbalance among charge screening, steric hindrance, and calcium bridging. These findings highlight the important role of heteroaggregation between oppositely charged nanoplastics on their fate and transport in aquatic environments.

15.
Carbohydr Res ; 541: 109168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38833821

RESUMEN

The physicochemical properties and biological activities of polysaccharides depend on their structures. Monosaccharide composition analysis is indispensable for the structural characterization of polysaccharides and is helpful in the quality control of polysaccharide preparation. Here, using a model mixture and tamarind seed polysaccharide as examples, we demonstrated that a quantitative 2D NMR method, gsHSQCi (three gradient-selective Heteronuclear Single Quantum Coherence spectra acquired with incremented repetition times, i = 1, 2, 3) can directly quantify a variety of monosaccharides in solution with adequate precision and accuracy, requiring no derivatization, postprocessing steps and column separation. Both anomeric and non-anomeric signals of monosaccharides can be utilized for content determination. More accurate quantification of fructose in a mixture containing nine monosaccharides is obtained, which is difficult to achieve by quantitative 1D 1HNMR and the common PMP-HPLC method (high-performance liquid chromatography through pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone) due to the peak overlapping and the poor derivatization efficiency, respectively. The results also revealed that Na[Fe(EDTA)] can serve as a proper relaxation-enhancing agent for saccharide samples to save experimental time. We expect that this approach can be applied as an alternative to analyzing the monosaccharide composition and be helpful in interpreting the structure of polysaccharides.


Asunto(s)
Monosacáridos , Monosacáridos/química , Monosacáridos/análisis , Espectroscopía de Resonancia Magnética , Polisacáridos/química , Polisacáridos/análisis
16.
Chemphyschem ; 25(15): e202300880, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705870

RESUMEN

Recent research on mechano-radicals has provided valuable insights into self-growth and adaptive responsive materials. Typically, mechanophores must remain inert in the absence of force but respond quickly to external tension before other linkages within the polymer network. Azo compounds exhibit promising combinations of mechanical stability and force-triggered reactivity, making them widely used as mechano-radicals in force-responsive materials. However, the activation conditions and behavior of azo compounds have yet to be quantitatively explored. In this study, we investigated the mechanical strength of three azo compounds using single-molecule force spectroscopy. Our results revealed that these compounds exhibit rupture forces ranging from ~500 to 1000 pN, at a loading rate of 3×104 pN s-1. Importantly, these mechanophores demonstrate distinct kinetic properties. Their unique mechanical attributes enable azo bond scission and free radical generation before causing major polymer backbone damage of entire material during polymer network deformation. This fundamental understanding of mechanophores holds significant promise for the development of self-growth materials and their related applications.

17.
Inorg Chem ; 63(19): 8863-8878, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38695487

RESUMEN

The determination of the site occupancy of activators in phosphors is essential for precise synthesis, understanding the relationship between their luminescence properties and crystal structure, and tailoring their properties by modifying the host composition. Herein, one simple method was proposed to help determine the sites at which the doping of rare earth ions or transition metal ions occupies in the host lattice through site occupancy theory (SOT) for ions doped into the matrix lattice. SOT was established based on the fact that doping ions preferentially occupy the sites with the lowest bonding energy deviations. In order to provide detailed experimental evidence to prove the feasibility of SOT, several scheelite-type compounds were successfully synthesized using a high-temperature solid-phase method. When Eu3+ ions occupy a similar surrounding environment site, the photoluminescence spectra of the activators Eu3+ are similar. Therefore, by comparing the intensity ratio of photoluminescence spectra and the mechanism of all transitions of KEu(WO4)2, KY(WO4)2:Eu3+, Na5Eu(WO4)4, and Na5Y(WO4)4:Eu3+, it was proved that SOT can successfully confirm the site occupation when doped ions enter the matrix lattice. SOT was further applied to the sites occupied by Eu3+ ion-doped LiAl(MoO4)2 and LiLu(MoO4)2.

18.
Cell Mol Immunol ; 21(7): 674-688, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740925

RESUMEN

The NLRP3 inflammasome functions as an inflammatory driver, but its relationship with lipid metabolic changes in early sepsis remains unclear. Here, we found that GITR expression in monocytes/macrophages was induced by lysophosphatidylcholine (LPC) and was positively correlated with the severity of sepsis. GITR is a costimulatory molecule that is mainly expressed on T cells, but its function in macrophages is largely unknown. Our in vitro data showed that GITR enhanced LPC uptake by macrophages and specifically enhanced NLRP3 inflammasome-mediated macrophage pyroptosis. Furthermore, in vivo studies using either cecal ligation and puncture (CLP) or LPS-induced sepsis models demonstrated that LPC exacerbated sepsis severity/lethality, while conditional knockout of GITR in myeloid cells or NLRP3/caspase-1/IL-1ß deficiency attenuated sepsis severity/lethality. Mechanistically, GITR specifically enhanced inflammasome activation by regulating the posttranslational modification (PTM) of NLRP3. GITR competes with NLRP3 for binding to the E3 ligase MARCH7 and recruits MARCH7 to induce deacetylase SIRT2 degradation, leading to decreasing ubiquitination but increasing acetylation of NLRP3. Overall, these findings revealed a novel role of macrophage-derived GITR in regulating the PTM of NLRP3 and systemic inflammatory injury, suggesting that GITR may be a potential therapeutic target for sepsis and other inflammatory diseases. GITR exacerbates LPC-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. According to the model, LPC levels increase during the early stage of sepsis, inducing GITR expression on macrophages. GITR not only competes with NLRP3 for binding to the E3 ligase MARCH7 but also recruits MARCH7 to induce the degradation of the deacetylase SIRT2, leading to decreasing ubiquitination but increasing acetylation of NLRP3 and therefore exacerbating LPC-induced NLRP3 inflammasome activation, macrophage pyroptosis and systemic inflammatory injury.


Asunto(s)
Proteína Relacionada con TNFR Inducida por Glucocorticoide , Lisofosfatidilcolinas , Macrófagos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Procesamiento Proteico-Postraduccional , Piroptosis , Sepsis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Sepsis/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Lisofosfatidilcolinas/metabolismo , Ratones , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Inflamasomas/metabolismo , Masculino , Ratones Noqueados , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Sirtuina 2/metabolismo , Sirtuina 2/genética , Acetilación
19.
Anal Chem ; 96(18): 7187-7193, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38671557

RESUMEN

Despite the significant importance of blood lithium (Li) detection in the treatment of bipolar disorder (BD), its point-of-care testing (POCT) remains a great challenge due to tedious sample preparation and the use of large-footprint atomic spectrometers. Herein, a system coupling dried blood spots (DBS) with a point discharge optical emission spectrometer equipped with a miniaturized ultrasonic nebulizer (MUN-µPD-OES) was developed for POCT of blood Li. Three microliters of whole blood were used to prepare a dried blood spot on a piece of filter paper to which 10 µL of eluent (1% (v/v) formic acid and 0.05% (v/v) Triton-X) was added. Subsequently, the paper was placed onto the vibrating steel membrane of the ultrasonic nebulizer and powered on to generate aerosol. The aerosol was directly introduced to the µPD-OES for quantification of Li by monitoring its atomic emission line at 670.8 nm. The proposed method minimized matrix interference caused by high levels of salts and protein. It is worth noting that the MUN suitably matches the needs of DBS sampling and can provide aerosolized introduction of Li into the assembled µPD-OES, thus eliminating all tedious sample preparation and the need for a commercial atomic spectrometer. Calibration response is linear in the therapeutic range and a limit of detection (LOD) of 1.3 µg L-1 is well below the Li minimum therapeutic concentration (2800 µg L-1). Li in mouse blood was successfully detected in real-time using MUN-µPD-OES after intraperitoneal injection of lithium carbonate, confirming that the system holds great potential for POCT of blood Li for patients with BD.


Asunto(s)
Pruebas con Sangre Seca , Litio , Pruebas en el Punto de Atención , Litio/sangre , Humanos , Pruebas con Sangre Seca/instrumentación , Pruebas con Sangre Seca/métodos , Animales , Ratones , Nebulizadores y Vaporizadores , Miniaturización , Ultrasonido , Límite de Detección
20.
Int Immunopharmacol ; 133: 112157, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678671

RESUMEN

In non-small cell lung cancer (NSCLC), identifying a component with certain molecular targets can aid research on cancer treatment. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin which induced the anti-cancer effects via the STAT3 signaling pathway, but the underlying molecular mechanism is still elusive. In this study, we first proved that DHA prohibits the growth of tumors both in vitro and in vivo. Data from transcriptomics showed that DHA reduced the expression level of the genes involved in cell cycle-promoting and anti-apoptosis, and most importantly, DHA restricted the expression level of receptor tyrosine kinase-like orphan receptor 1 (ROR1) which has been reported to have abnormal expression on tumor cells and had close interaction with STAT3 signaling. Then, we performed comprehensive experiments and found that DHA remarkably decreased the expression of ROR1 at both mRNA and protein levels and it also diminished the phosphorylation level of STAT3 in NSCLC cell lines. In addition, our data showed that exogenously introduced ROR1 could significantly enhance the phosphorylation of STAT3 while blocking ROR1 had the opposite effects indicating that ROR1 plays a critical role in promoting the activity of STAT3 signaling. Finally, we found that ROR1 overexpression could partially reverse the decreased activity of STAT3 induced by DHA which indicates that DHA-induced anti-growth signaling is conferred, at least in part, through blocking ROR1-mediated STAT3 activation. In summary, our study indicates that in NSCLC, ROR1 could be one of the critical molecular targets mediating DHA-induced STAT3 retardation.


Asunto(s)
Artemisininas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Factor de Transcripción STAT3 , Artemisininas/farmacología , Artemisininas/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Animales , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Apoptosis/efectos de los fármacos , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células A549 , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...