Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38300779

RESUMEN

Intracardiac wireless communication is crucial for the development of multi-chamber leadless cardiac pacemakers (LCP). However, the time-varying characteristics of intracardiac channel pose major challenges. As such, mastering the dynamic conduction properties of the intracardiac channel and modeling the equivalent time-varying channel are imperative for realizing LCP multi-chamber pacing. In this paper, we present a limiting volume variational approach based on the electrical properties of cardiac tissues and trends in chamber volume variation. This approach was used to establish a quasi-static and a continuous time-varying equivalent circuit model of an intracardiac channel. An equivalence analysis was conducted on the model, and a discrete time-varying equivalent circuit phantom grounded on the cardiac cycle was subsequently established. Moreover, an ex vivo cardiac experimental platform was developed for verification. Results indicate that in the frequency domain, the congruence between phantom and ex vivo experimental outcomes is as high as 94.3%, affirming the reliability of the equivalent circuit model. In the time domain, the correlation is up to 75.3%, corroborating its effectiveness. The proposed time-varying equivalent circuit model exhibits stable and standardized dynamic attributes, serving as a powerful tool for addressing time-varying challenges and simplifying in vivo or ex vivo experiments.

2.
J Hazard Mater ; 465: 133174, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38086299

RESUMEN

Microbial induced carbonate precipitation (MICP) can immobilize metals and reduce their bioavailability. However, little is known about the immobilization mechanism of Cd in the presence of soil cations and the triggered gene expression and metabolic pathways in paddy soil. Thus, microcosmic experiments were conducted to study the fractionation transformation of Cd and metatranscriptome analysis. Results showed that bioavailable Cd decreased from 0.62 to 0.29 mg/kg after 330 d due to the MICP immobilization. This was ascribed to the increase in carbonate bound, Fe-Mn oxides bound, and residual Cd. The underlying immobilization mechanisms could be attributed to the formation of insoluble Cd-containing precipitates, the complexation and lattice substitution with carbonate and Fe, Mn and Al (hydr)oxides, and the adsorption on functional group on extracellular polymers of cell. During the MICP immobilization process, up-regulated differential expression urease genes were significantly enriched in the paddy soil, corresponding to the arginine biosynthesis, purine metabolism and atrazine degradation. The metabolic pathway of bacterial chemotaxis, flagellum assembly, and peptidoglycan biosynthesis and the expression of cadA gene related to Cd excretion enhanced Cd resistance of soil microbiome. Therefore, this study provided new insights into the immobilization mechanisms of Cd in paddy soils through ureolysis-based MICP process.


Asunto(s)
Oryza , Contaminantes del Suelo , Suelo , Cadmio/metabolismo , Contaminantes del Suelo/análisis , Carbonatos/análisis , Cationes , Óxidos/análisis , Oryza/metabolismo , Carbonato de Calcio/metabolismo
3.
Arch Environ Contam Toxicol ; 86(1): 73-89, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38117305

RESUMEN

The mining and smelting site soils in South China present excessive Cd pollution. However, the transport behavior of Cd in the highly weathered acidic soil layer at the lead-zinc smelting site remains unclear. Here, under different conditions of simulated infiltration, the migration behavior of Cd2+ in acid smelting site soils at different depths was examined. The remodeling effect of Cd2+ migration behavior on microbial community structure and the dominant microorganisms in lead-zinc sites soils was analyzed using high-throughput sequencing of 16S rRNA gene amplicons. The results revealed a specific flow rate in the range of 0.3-0.5 mL/min that the convection and dispersion have no obvious effect on Cd2+ migration. The variation of packing porosity could only influence the migration behavior by changing the average pore velocity, but cannot change the adsorption efficiency of soil particles. The Cd has stronger migration capacity under the reactivation of acidic seepage fluid. However, in the alkaline solution, the physical properties of soil, especially pores, intercept the Cd compounds, further affecting their migration capacity. The acid-site soil with high content of SOM, amorphous Fe oxides, crystalline Fe/Mn/Al oxides, goethite, and hematite has stronger ability to adsorb and retain Cd2+. However, higher content of kaolinite in acidic soil will increase the potential migration of Cd2+. Besides, the migration behavior of Cd2+ results in simplified soil microbial communities. Under Cd stress, Cd-tolerant genera (Bacteroides, Sphingomonas, Bradyrhizobium, and Corynebacterium) and bacteria with both acid-Cd tolerance (WCHB 1-84) were distinguished. The Ralstonia showed a high enrichment degree in alkaline Cd2+ infiltration solution (pH 10.0). Compared to the influence of Cd2+ stress, soil pH had a stronger ability to shape the microbial community in the soil during the process of Cd2+ migration.


Asunto(s)
Microbiota , Contaminantes del Suelo , Suelo/química , Cadmio/toxicidad , ARN Ribosómico 16S , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Zinc/análisis , Óxidos
4.
Toxics ; 11(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37999595

RESUMEN

At present, the pollution of arsenic (As) and lead (Pb) is becoming increasingly serious. The pollution caused by the release of As and Pb from lead-zinc mines has seriously affected the water and soil environment and threatened human health. It is necessary to reveal the release characteristics of As and Pb. The actual scene of mine drainage (MD) and rainwater (RW) leaching waste rocks is the one of the main reasons for the release of As and Pb. However, the leaching behavior of As and Pb in these waste rocks under MD and RW suffered from a lack of in-depth research. In this study, we investigated the occurrence of As and Pb in waste rocks (S1-S6) by using X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (TOF-SIMS), and then, the changes in As and Pb concentration and the hydrochemical parameter in leaching solution were systematically studied. Furthermore, the correlation between the release of As and Pb and mineral composition was also evaluated. Results showed that these waste rocks were mainly composed of carbonate and sulfide minerals. As and Pb were mainly bounded or associated with sulfide minerals such as arsenopyrite, pyrite, chalcopyrite, and galena in these waste rocks, and small parts of As and Pb were absorbed or encased by clay minerals such as kaolinite and chlorite. Under MD and RW leaching, the pH, redox potential (Eh), and electric conductivity (EC) of each waste rock tended to be consistent due to their buffering ability; the leachate pH of waste rocks with more carbonate minerals was higher than that of sulfide minerals. Both As and Pb were released most under MD leaching in comparison to RW, reaching 6.57 and 60.32 mg/kg, respectively, due to MD's low pH and high Eh value. However, As in waste rock released more under alkaline conditions because part of the arsenic was in the form of arsenate. As and Pb release were mainly positively correlated with the proportions of sulfide minerals in these waste rocks. MD leaching significantly promoted the release of As and Pb from waste rocks, which would cause a great threat to the surrounding environment, and control measures were imperative. This paper not only reveals the As and Pb pollution mechanism around the lead-zinc mining area but also provides a theoretical basis for the prevention and control of As and Pb pollution in the future.

5.
EMBO J ; 42(23): e113625, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37902287

RESUMEN

ER-phagy is a selective autophagy process that targets specific regions of the endoplasmic reticulum (ER) for removal via lysosomal degradation. During cellular stress induced by starvation, cargo receptors concentrate at distinct ER-phagy sites (ERPHS) to recruit core autophagy proteins and initiate ER-phagy. However, the molecular mechanism responsible for ERPHS formation remains unclear. In our study, we discovered that the autophagy regulator UV radiation Resistance-Associated Gene (UVRAG) plays a crucial role in orchestrating the assembly of ERPHS. Upon starvation, UVRAG localizes to ERPHS and interacts with specific ER-phagy cargo receptors, such as FAM134B, ATL3, and RTN3L. UVRAG regulates the oligomerization of cargo receptors and facilitates the recruitment of Atg8 family proteins. Consequently, UVRAG promotes efficient ERPHS assembly and turnover of both ER sheets and tubules. Importantly, UVRAG-mediated ER-phagy contributes to the clearance of pathogenic proinsulin aggregates. Remarkably, the involvement of UVRAG in ER-phagy initiation is independent of its canonical function as a subunit of class III phosphatidylinositol 3-kinase complex II.


Asunto(s)
Retículo Endoplásmico , Rayos Ultravioleta , Retículo Endoplásmico/metabolismo , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Estrés del Retículo Endoplásmico/genética
6.
Sci Total Environ ; 871: 162081, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754325

RESUMEN

Phosphorus recovery from water and the subsequent reuse of its products can solve both water eutrophication and phosphorus resource waste issues. However, the potential use of the final recovered products as crop phosphorus fertilizers and the transformation of phosphorus fractions in soils have rarely been analyzed. In this study, the effects of a phosphorus recovery product (w-HC/CSH/P) obtained from our previous phosphorus recovery study on pepper growth were investigated. The association between soil phosphorus fraction transformation and the microbial co-occurrence network was investigated using high-throughput sequencing. The results showed that amendment with w-HC/CSH/P could promote the growth and chlorophyll content of pepper, which exhibited high phosphorus fertilizer efficiency. In addition, applying w-HC/CSH/P in soils could increase the microbial alpha-diversity during pepper cultivation and induce changes in the microbial community, leading to an increase in the relative abundance of Povalibacter, Lysobacter, and GP10 and a decrease in GP17. The proportion of Resin-P and NaHCO3-Po decreased, whereas that of NaOH-Po increased during pepper cultivation. psOTU331 (g_Latescibacteria), psOTU377 (g_Lysobacter), and psOTU461 (g_Pseudoxanthomonas) were the key microorganisms driving the transformation of phosphorus fractionation in the microbial co-occurrence network. Latescibacteria and Lysobacter were closely correlated with the transformation of NaHCO3-Po to NaOH-Po, and Pseudoxanthomonas was significantly correlated with a decrease in Resin-P. These observations highlight the potential of phosphorus recovery products as fertilizer for pepper and provide new insights into the transformation of phosphorus fractions corresponding to the microbiome in soils.


Asunto(s)
Fósforo , Suelo , Fertilizantes , Hidróxido de Sodio , Bacterias , Microbiología del Suelo , Agua
7.
Open Life Sci ; 18(1): 20220670, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239497

RESUMEN

This study aimed to investigate effects of pulmonary fractalkine (FKN/CX3CL1) on angiogenesis and tube formation. Tube forming capability of pulmonary vascular endothelial cells (PVECs) was evaluated. CCK-8 assay was used to evaluate proliferation of PVECs. RT-PCR assay was used to determine angiogenesis specific biomarkers. Western blot was applied to identify CX3CR1, Akt, phosphorylated Akt (p-Akt), Erk1/2, phosphorylated Erk1/2 (p-Erk1/2), vascular endothelial growth factor A (VEGFA), and inducible nitric oxide synthase (iNOS) expression. VEGF-A and platelet-derived growth factor (PDGF) levels were examined using ELISA. FKN was safe and triggered tube formation in PVECs. FKN significantly enhanced VEGF-A, PDGF, and iNOS gene transcription compared to the Control group (p < 0.05). CX3CR1 interfering (LV5-CX3CR1 shRNA) remarkably reduced CX3CR1 expression compared to those in LV5 blank group (p < 0.05). Ratios of p-Akt/Akt and p-Erk/Erk were significantly decreased in CX3CR1 shRNA-treated PVECs administered Akt inhibitor (or Erk inhibitor) and 10 ng/mL FKN compared to CX3CR1 shRNA-treated PVECs administered 10 ng/mL FKN (p < 0.05). FKN increased VEGF-A and iNOS expression through activating Akt/Erk pathway. FKN promoted VEGF-A/iNOS expression and triggered p-Akt/Akt and p-Erk/Erk pathway through modulating CX3CR1. FKN-treated macrophages enhanced activation of Akt/Erk pathway. FKN-treated macrophages enhanced PDGF and VEGF-1 expression in PVECs. FKN modulated pulmonary angiogenesis and tube formation through modulating CX3CR1 and growth factors and activating p-Akt/Akt and p-Erk/Erk signaling pathway.

8.
Am J Transl Res ; 14(11): 7932-7941, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505288

RESUMEN

OBJECTIVE: To investigate the clinical value of modified skin expansion in peripherally inserted central venous catheter (PICC) catheterization under the guidance of B-ultrasound in gastrointestinal cancer patients with chemotherapy. METHODS: In this retrospective study, 60 gastrointestinal cancer patients with chemotherapy were included and divided into an experimental group (treated with modified skin expansion in PICC catheterization under the guidance of B-ultrasound) and a control group (treated with the longitudinal skin expansion in PICC catheterization under the guidance of B-ultrasound). The bleeding volume, pain score, success rate of one-time PICC catheterization and the incidence of complication were compared between the two groups. RESULTS: The modified skin expansion in PICC catheterization under the guidance of B-ultrasound had obvious effect on gastrointestinal cancer patients with chemotherapy. The VAS scores were significantly lower after PICC catheterization in the experimental group compared with the control group (P < 0.05). The success rate of one-time PICC catheterization in the experimental group was significantly higher than that in the control group. Moreover, the incidence of complication and massive bleeding during puncture and 24 hours after puncture was significantly lower in the observation group compared with that in the control group. CONCLUSIONS: Modified skin expansion in PICC catheterization under the guidance of B-ultrasound in gastrointestinal cancer patients with chemotherapy can improve the success rate of one-time sheath delivery, effectively reduce the amount of blood leakage after catheterization, reduce patients' pain and reduce the incidence of complications.

9.
Front Microbiol ; 13: 1049277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569074

RESUMEN

The anthropogenic activities in agriculture, industrialization, mining, and metallurgy combined with the natural weathering of rocks, have led to severe contamination of soils by toxic metal(loid)s. In an attempt to remediate these polluted sites, a plethora of conventional approaches such as Solidification/Stabilization (S/S), soil washing, electrokinetic remediation, and chemical oxidation/reduction have been used for the immobilization and removal of toxic metal(loid)s in the soil. However, these conventional methods are associated with certain limitations. These limitations include high operational costs, high energy demands, post-waste disposal difficulties, and secondary pollution. Bioleaching has proven to be a promising alternative to these conventional approaches in removing toxic metal(loid)s from contaminated soil as it is cost-effective, environmentally friendly, and esthetically pleasing. The bioleaching process is influenced by factors including pH, temperature, oxygen, and carbon dioxide supply, as well as nutrients in the medium. It is crucial to monitor these parameters before and throughout the reaction since a change in any, for instance, pH during the reaction, can alter the microbial activity and, therefore, the rate of metal leaching. However, research on these influencing factors and recent innovations has brought significant progress in bioleaching over the years. This critical review, therefore, presents the current approaches to bioleaching and the mechanisms involved in removing toxic metal(loid)s from contaminated soil. We further examined and discussed the fundamental principles of various influencing factors that necessitate optimization in the bioleaching process. Additionally, the future perspectives on adding omics for bioleaching as an emerging technology are discussed.

10.
Biosensors (Basel) ; 12(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36354443

RESUMEN

The respiratory rate is one of the crucial indicators for monitoring human physiological health. The purpose of this paper was to introduce a head-mounted respiratory monitoring solution based on electrical impedance sensing. Firstly, we constructed a finite element model to analyze the feasibility of using head impedance for respiratory sensing based on the physiological changes in the pharynx. After that, we developed a circuit module that could be integrated into a head-mounted respiratory monitoring device using a bioelectrical impedance sensor. Furthermore, we combined adaptive filtering and respiratory tracking algorithms to develop an app for a mobile phone. Finally, we conducted controlled experiments to verify the effectiveness of this electrical impedance sensing system for extracting respiratory rate. We found that the respiration rates measured by the head-mounted electrical impedance respiratory monitoring system were not significantly different from those of commercial respiratory monitoring devices by a paired t-test (p > 0.05). The results showed that the respiratory rates of all subjects were within the 95% confidence interval. Therefore, the head-mounted respiratory monitoring scheme proposed in this paper was able to accurately measure respiratory rate, indicating the feasibility of this solution. In addition, this respiratory monitoring scheme helps to achieve real-time continuous respiratory monitoring, which can provide new insights for personalized health monitoring.


Asunto(s)
Algoritmos , Electrocardiografía , Humanos , Impedancia Eléctrica , Estudios de Factibilidad , Monitoreo Fisiológico
11.
Cell Mol Biol Lett ; 27(1): 93, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273122

RESUMEN

BACKGROUND: EVA1A (Eva-1 homolog A), a novel protein involved in autophagy and apoptosis, functions as a tumor suppressor in some human primary cancers, including hepatocellular carcinoma (HCC). While it is consistently downregulated in several cancers, its involvement in hepatocarcinogenesis is still largely unknown. METHODS: We first detected the expression of EVA1A in HCC tissues and cell lines using RT‒qPCR, immunohistochemistry and western blotting and detected the expression of miR-103a-3p by RT‒qPCR. Then, bioinformatics prediction, dual-luciferase reporter gene assays and western blotting were used to screen and identify the upstream microRNA of EVA1A. After manipulating the expression of miR-103a-3p or EVA1A, wound healing, invasion, proliferation, colony formation, apoptosis, autophagy, mitosis and mitochondrial function assays, including mitochondrial membrane potential, ROS and ATP production assays, were performed to investigate the functions of miR-103a-3p targeting EVA1A in HCC cells. Apoptosis-related proteins were assessed by RT‒qPCR (TP53) or western blotting (TP53, BAX, Bcl-2 and caspase-3). Autophagy level was evaluated by observing LC3 puncta and examining the protein levels of p62, Beclin1 and LC3-II/I. RESULTS: We found that EVA1A expression was decreased while miR-103a-3p expression was increased in HCC tissues and cell lines and that their expression was inversely correlated in HCC patients. The expression of miR-103a-3p was associated with HCC tumor stage and poor prognosis. miR-103a-3p could target EVA1A through direct binding to its 3'-UTR and suppress its expression. Overexpression of miR-103a-3p significantly downregulated the expression of EVA1A, TP53 and BAX, upregulated the JAK2/STAT3 pathway and promoted HCC cell migration, invasion and proliferation, while repression of miR-103a-3p dramatically upregulated the expression of EVA1A, TP53, BAX and cleaved-caspase-3, inhibited HCC cell migration, invasion and proliferation, and caused mitochondrial dysfunction and apoptosis. Overexpression of EVA1A significantly attenuated the cancer-promoting effects of miR-103a-3p in HCC cells, while knockdown of EVA1A alleviated the mitochondrial dysfunction and apoptosis caused by miR-103a-3p inhibition. Overexpression of EVA1A did not induce significant changes in autophagy levels, nor did it affect G2/M transition or mitosis. CONCLUSION: These findings indicate that the downregulation of the tumor suppressor EVA1A by miR-103a-3p potentially acts as a key mediator in HCC progression, mainly by inhibiting apoptosis and promoting metastasis. The miR-103a/EVA1A/TP53 axis provides a new potential diagnostic and therapeutic target for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Regiones no Traducidas 3' , Adenosina Trifosfato , Proteína X Asociada a bcl-2/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/fisiopatología , Caspasa 3/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/fisiopatología , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Sensors (Basel) ; 22(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35746237

RESUMEN

Conductive intracardiac communication (CIC) has become one of the most promising technologies in multisite leadless pacemakers for cardiac resynchronization therapy. Existing studies have shown that cardiac pulsation has a significant impact on the attenuation of intracardiac communication channels. In this study, a novel variable-volume circuit-coupled electrical field heart model, which contains blood and myocardium, is proposed to verify the phenomenon. The influence of measurements was combined with the model as the equivalent circuit. Dynamic intracardiac channel characteristics were obtained by simulating models with varying volumes of the four chambers according to the actual cardiac cycle. Subsequently, in vitro experiments were carried out to verify the model's correctness. Among the dependences of intracardiac communication channels, the distance between pacemakers exerted the most substantial influence on attenuation. In the simulation and measurement, the relationship between channel attenuation and pulsation was found through the variable-volume heart model and a porcine heart. The CIC channel attenuation had a variation of less than 3 dB.


Asunto(s)
Terapia de Resincronización Cardíaca , Marcapaso Artificial , Animales , Comunicación , Conductividad Eléctrica , Corazón , Porcinos
13.
Ecotoxicol Environ Saf ; 239: 113617, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35580509

RESUMEN

The investigation of chemical speciation of primary toxic metal(loid)s (Cd, Pb, and As) in soil profile in nonferrous metal smelting site is a key to the assessment of their mobility characteristics and formulation of subsequent remediation strategy. In this study, 74 soil samples were collected at 12 different soil profiles; soil physio-chemical properties and total content of Cd, Pb and As and corresponding chemical speciation were also determined. The results showed that the mean total concentration followed the order of Pb > As > Cd. A large proportion of Pb, Cd and As were accumulated in upper soil profiles (depth < 3 m). Heavy pollution of Pb, Cd and As were observed in the whole soil profile at the area of fuel oil storage tank (ZY6) and lead smelting area (ZY8). The dominant fraction of Cd was exchangeable fraction (F1); Pb was dominant in Fe/Mn oxides-bound fraction (F3) in most cases; Crystallized Fe/Al hydrous oxides bound fraction (F4) generally accounted for a large proportion of As. Mobility factor (MF) followed the order Cd > As > Pb, indicating that Cd was the most mobile element in soil profiles. Pearson correlation analysis found that MFCd was significantly positively correlated to soil silt; the F4 fraction percentage of As was significantly positively correlated to soil redox potential (Eh). Additionally, MFCd/Pb was found to be positively correlated to crystalline iron (Fec), while negatively correlated to amorphous iron (Feo). The findings reported in this study, on the basis of distribution characteristics of chemical speciation could provide a new solution for future soil remediation at the site. Long-term solutions to metal(loid)s pollution might be offered by microbial-assisted soil washing technique that promotes the transformation of Fe/Mn oxides-bound fraction and organic/sulfide-bound fraction.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Arsénico/análisis , Cadmio/análisis , China , Monitoreo del Ambiente/métodos , Hierro/análisis , Plomo/análisis , Metales Pesados/análisis , Óxidos/análisis , Suelo/química , Contaminantes del Suelo/análisis
14.
Ecotoxicol Environ Saf ; 228: 113037, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34856484

RESUMEN

Over the past few decades, nonferrous mining has produced numerous waste rock and part of the waste that has not been properly treated was generally dumped at roadsides and hill slopes. However, the vertical distributions of toxic metal(loid)s and composition of microbial communities in waste heap and the under-laid pristine soil are rarely studied. In this work, the fraction-related distributions of toxic metal(loid)s were investigated at a waste heap profile and the indigenous microbial assemblages were also analyzed by Illumina sequencing of 16 s rRNA genes. Results showed that compared to the under-laid pristine soil, content of toxic metal(loid)s, especially Cd, As and Pb, in waste rock layer were higher. Most of As in subsoil existed as non-specifically sorbed and specifically-sorbed fractions, which could be ascribed to the migration from the upper layer. The mobility was significantly correlated with Eh, EC, clay content, CEC and the total content of metal(loid)s. Phyla Proteobacteria, Acidobacteria and Firmicutes dominated the microbial communities. The microbial community compositions at the genus level were similar, but their relative abundances were mainly influenced by pH, CEC, Eh, SOM, and bioavailability content of toxic metal(loid)s. Besides, microbial functions of elements (S, Fe, Mn and As) oxidation/reduction and metabolites (siderophore, biosurfactant, organic acid, phosphatase and urease) potentially were used for pollutants bioremediation.

15.
Sensors (Basel) ; 21(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419134

RESUMEN

Intrabody communication (IBC) can achieve better power efficiency and higher levels of security than other traditional wireless communication technologies. Currently, the majority of research on the body channel characteristics of galvanic coupling IBC are motionless and have only been evaluated in the frequency domain. Given the long measuring times of traditional methods, the access to dynamic variations and the simultaneous evaluation of the time-frequency domain remains a challenge for dynamic body channels such as the cardiac channel. To address this challenge, we proposed a parallel measurement methodology with a multi-tone strategy and a time-parameter processing approach to obtain a time-frequency evaluation for dynamic body channels. A group search algorithm has been performed to optimize the crest factor of multitone excitation in the time domain. To validate the proposed methods, in vivo experiments, with both dynamic and motionless conditions were measured using the traditional method and the proposed method. The results indicate that the proposed method is more time efficient (Tmeas = 1 ms) with a consistent performance (ρc > 98%). Most importantly, it is capable of capturing dynamic variations in the body channel and provides a more comprehensive evaluation and richer information for the study of IBC.

16.
Mol Cell Biochem ; 476(2): 1151-1163, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33200377

RESUMEN

Transmembrane protein 166 (TMEM166), an endoplasmic reticulum-associated protein, functions in many diseases via regulating autophagy and/or apoptosis. However, the role of TMEM166 in hepatocellular carcinoma (HCC) remains largely unknown. In this study, we detected the expression of TMEM166 in HCC by real-time fluorescent quantitative PCR (RT-qPCR), immunohistochemistry and western blot. To investigate its biological function and underlying mechanism in HCC, TMEM166 was overexpressed in HCC cell lines and assessed its effects on cell proliferation, migration, invasion, apoptosis and cell cycle by MTT assay, wound healing assay, Transwell assay, Annexin V-FITC/PI assay, JC-1 staining and flow cytometry assay, respectively. Results demonstrated that the expression of TMEM166 was significantly decreased in HCC and was associated with advanced TNM clinical stage and poor clinical outcome of HCC patients. TMEM166 overexpression inhibited HCC cells proliferation, migration and invasion. Furthermore, TMEM166 inhibited cell proliferation by inducing apoptosis and cell cycle arrest via upregulating anti-oncogene TP53 and TP53 knockdown significantly alleviated the anti-tumor effects of TMEM166 on HCC cells. This study provides the first comprehensive analysis the role of TMEM166 in HCC. TMEM166 displays a fine anti-tumor activity on HCC cells involving a mechanism of upregulating TP53. This study suggests TMEM166 is a potential target for the treatment of HCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/genética , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-32998275

RESUMEN

In this study soils at different depths were collected in a Zn smelting site located in Zhuzhou City, China, in order to understand toxic metal(loid)s distribution and microbial community in vertical soil profile at a smelting site. Except Soil properties and metal(loid)s content, the richness and diversity of microbial communities in soil samples were analyzed via high-throughput Illumina sequencing of 16s rRNA gene amplicons. The results showed that the content of As, Pb, Cu, Cd, Zn, and Mn was relatively high in top soil in comparison to subsoil, while the concentration of Cr in subsoil was comparable with that in top soil due to its relative high background value in this soil layer. The bioavailability of Cd, Mn, Zn, and Pb was relative higher than that of As, Cr, and Cu. The diversity of soil microbial communities decreased with increasing depth, which might be ascribed to the decrease in evenness with increase in depth duo to the influence by environmental conditions, such as pH, TK (total potassium), CEC (cation exchange capacity), ORP (oxidation reduction potential), and Bio-Cu (bioavailable copper). The results also found Acidobacteria, Proteobacteria, Firmicutes, and Chloroflexi were dominant phyla in soil samples. At the genus level, Acinetobacter, Pseudomonas, and Gp7 were dominant soil microorganism. Besides, Environmental factors, such as SOM (soil organic matter), pH, Bio-Cu, Bio-Cd (bioavailable cadmium), and Bio-Pb (bioavailable lead), greatly impacted microbial community in surface soil (1-3 m), while ORP, TK, and AN concentration influenced microbial community in the subsoil (4-10 m).


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Microbiota , Contaminantes del Suelo/análisis , China , Ciudades , Metaloides/análisis , Metalurgia , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo
18.
Sensors (Basel) ; 20(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823493

RESUMEN

Fluorescence immunochromatographic assay (FICA) is a rapid immunoassay technique that has the characteristics of high precision and sensitivity. Although image FICA strip readers have the advantages of high portability and easy operation, the use of high-precision complementary metal oxide semiconductor (CMOS) image sensors leads to an increase in overall cost. Considering the popularity of CMOS image sensors in smartphones and their powerful processing functions, this work developed a smartphone-based FICA strip reader. An optical module suitable for the test strips with different fluorescent markers was designed by replacing the excitation light source and the light filter. An android smartphone was used for image acquisition and image denoising. Then, the test and control lines of the test strip image were recognized by the sliding window algorithm. Finally, the characteristic value of the strip image was calculated. A linear detection range from 10 to 5000 mIU/mL (R2 = 0.95) was obtained for human chorionic gonadotrophin with the maximum relative error less than 9.41%, and a linear detection range from 5 to 4000 pg/mL (R2 = 0.99) was obtained for aflatoxin B1, with the maximum relative error less than 12.71%. Therefore, the smartphone-based FICA strip reader had high portability, versatility, and accuracy.


Asunto(s)
Inmunoensayo , Teléfono Inteligente , Aflatoxina B1/análisis , Colorantes , Humanos , Límite de Detección
19.
ACS Sens ; 5(7): 2247-2254, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32627537

RESUMEN

A customizable fluorescent probe platform that can be used to detect various bioactive analytes offers significant potential for engineering a wide range of bioprobes with diverse sensing and imaging functions. Here, we show a facile and innovative strategy for introducing cis-amino-proline as a carrier scaffold, which is appended with three specific functional groups: a target group, a water-soluble group, and fluorophores with triggers. The potency of the designed strategy could be customized to generate variable multifunctional fluorescent probes for detecting bioactive species of interest, including reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive sulfur species (RSS), ROS/RSS, and even enzymes. We designed and synthesized five representative water-soluble and organelle-targeted compounds, PMB, PMN, PMD, PRB, and PME, with emission wavelengths of these fluorescent probes varying from blue to red (465, 480, 535, 550, 565, and 640 nm). This strategy could be exemplified by its application to develop a mitochondria-/lysosome-targeting multifunctional fluorescent probe capable of imaging bioactive species of interest in live cells and nude mice.


Asunto(s)
Colorantes Fluorescentes , Especies de Nitrógeno Reactivo , Animales , Ratones , Ratones Desnudos , Orgánulos , Especies Reactivas de Oxígeno
20.
Ecotoxicol Environ Saf ; 191: 110009, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31806252

RESUMEN

In recent years, many studies have been devoted to investigate the application of microbial induced phosphate precipitation (MIPP) process for potentially toxic element polluted soil remediation. MIPP biomineralization technique exhibits a great potential to efficiently remediate polluted soil considering its low cost, green and ecofriendly process, and simple in operation. This paper represented a review on the state of the art of polluted soil remediation based on MIPP technique. Briefly, certain defined criteria on targeted microbe selection was discussed; an overall review on the utilization of MIPP process for toxic ions biomineralization in soil was provided; influencing factors reported in the literature, such as pH, temperature, humic substances, coexisting ions, effective microbial population, and enzyme activity, were then comprehensively reviewed; finally; a special emphasis was given to enhance MIPP remediation performance in soil in future research.


Asunto(s)
Microbiología del Suelo , Contaminantes del Suelo/química , Biomineralización , Precipitación Química , Restauración y Remediación Ambiental , Iones , Fosfatos/química , Suelo/química , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...