Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 827: 154042, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217039

RESUMEN

Coastal oceans, known as the major nitrous oxide (N2O) source to the atmosphere, are increasingly subject to eutrophication and concurrent near-bottom hypoxia. The natural nitrogen cycle is likely to be altered markedly in hypoxic coastal oceans. However, the processes responsible for N2O production and emission remain elusive because of lacking field rate measurements simultaneously conducted in the water column and sediment. Here, we quantified N2O production rates using a 15N-labeled technique in the water-column and surface sediments off the Changjiang (Yangtze) River estuary, the largest hypoxic zone in the Pacific margins. Our results showed that the estuarine surface sediments were the major source for N2O production, accounting for approximately 90% of the total water-column accumulation and consequent efflux of N2O in the hypoxic zone, whereas the water-column nitrification and denitrification combined only contributed <10%. More importantly, the coupling of nitrification and denitrification at the presence of abundant supply and remineralization of labile organic matter was the main driver of the N2O release from the sediment-water interface in this region. This study highlights the dominant role of benthic processes occurring at the sediment-water interface controlling the coastal N2O budget, as the anthropogenic eutrophication and hypoxia are expanding in coastal oceans.


Asunto(s)
Óxido Nitroso , Ríos , Desnitrificación , Estuarios , Humanos , Hipoxia , Nitrificación , Nitrógeno/análisis , Óxido Nitroso/análisis , Agua
2.
Sci Total Environ ; 818: 151678, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34793800

RESUMEN

Information on the sources and transformations of particulate organic N (PN) and dissolved organic N (DON) at the coastal interface remains insufficient due to technological difficulties and complicated features of intensive physical mixing and rapid biological activities. Here, we investigated the spatial distribution of concentrations and isotopic compositions of PN and DON in the Changjiang plume during the summer flood period. In average, DON and PN accounted for 25.6 ± 12.1% and 8.1 ± 9.1% (n = 55), respectively, of the total N pool, with the remaining N primarily in the form of nitrate (NO3-). Mean δ15N values were the lowest for DON (-0.1 ± 2.7‰, n = 58) and slightly higher for PN (2.0 ± 1.6‰, n = 101), and the highest for NO3- (6.5 ± 2.2‰, n = 67), suggesting multiple transformations had occurred to differentiate isotopic characteristics among the three N pools. By applying a conservative mixing model, we found DON deficits (-3.5 ± 3.7 µmol L-1, n = 43) and negative shift in δ15NDON (-3.6 ± 2.2‰, n = 43) in the Changjiang plume, revealing nonconservative DON behaviors. In the offshore surface plume where Chlorophyll a was high, the most likely cause is the DON uptake by phytoplankton with a strong inverse isotope effect (around -40‰). This DON assimilation by phytoplankton contributed to ~16 ± 12% of the PN production, with the remaining supported by NO3- assimilation, producing an overall isotope effect of 4-9‰. However, in waters near the river mouth and at the bottom of the offshore plume where total suspended matter concentrations were high (>5 mg L-1), the DON deficit was most likely induced by the selective adsorption of 15N enriched moieties of DON onto particulate surfaces (with an isotope effect of -20‰ to -5‰). Unlike dissolved organic carbon to behave conservatively in most estuaries, our results show that active transformations had occurred between the DON and PN pools in the Changjiang plume.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , China , Clorofila A , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...