Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Sci Total Environ ; 921: 171041, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38369162

RESUMEN

The vertical groundwater circulation well (GCW) is a commonly used technique in contaminated sites to remove secondary contaminants from low permeable zones. Early GCW studies often used simple subsurface hydraulic properties, such as anisotropic homogeneous aquifers or low conductivity lens/blocks, to mimic the complex subsurface heterogeneity. Although studies based on simplified representations of aquifer heterogeneity provide straightforward flow and transport information for engineering design of a GCW, they may over- or under-estimate contaminant fate and transport in the field. The objective of this study is to identify key heterogeneity factors that control the capture zone extension and to examine the extent to which the accuracy of estimated heterogeneity spatial distributions influences the prediction of remedial reagent transport. To achieve these objectives, we utilized Monte Carlo simulation to investigate the extension of the circulation zone in heterogeneous aquifers and to identify the key factors that contribute most to the variability of the circulation zone. Three commonly used geostatistical approaches (equivalent homogeneous, kriging, and highly parameterized methods) were employed to estimate the spatial distributions of key factors. The reliabilities of these estimated fields were evaluated through their remedial reagent transport predictability. The key factor analysis revealed that the mean porosity value, the variance of lnK, and the correlation length of lnK profoundly influence the lateral expansion of the capture zone. Neglecting the aquifer hydraulic conductivity heterogeneity underestimates the extension of the circulation zone and the spread of remedial reagent. Additionally, utilizing a highly parameterized approach to estimate the high-resolution K field can accurately reproduce the key remedial reagent distributions. The concentration arrival time and peak concentration are significantly improved compared to those predictions based on the equivalent homogeneous and kriged K fields.

2.
Theranostics ; 14(4): 1662-1682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389830

RESUMEN

Background: Precise and dynamic blood glucose regulation is paramount for both diagnosing and managing diabetes. Continuous glucose monitoring (CGM) coupled with insulin pumps forms an artificial pancreas, enabling closed-loop control of blood glucose levels. Indeed, this integration necessitates advanced micro-nano fabrication techniques to miniaturize and combine sensing and delivery modules on a single electrode. While microneedle technology can mitigate discomfort, concerns remain regarding infection risk and potential sensitivity limitations due to their short needle length. Methods: This study presents the development of an integrated electronic/fluidic microneedle patch (IEFMN) designed for both glucose sensing and insulin delivery. The use of minimally invasive microneedles mitigates nerve contact and reduces infection risks. The incorporation of wired enzymes addresses the issue of "oxygen deprivation" during glucose detection by decreasing the reliance on oxygen. The glucose-sensing electrodes employ wired enzyme functionalization to achieve lower operating voltages and enhanced resilience to sensor interference. The hollow microneedles' inner channel facilitates precise drug delivery for blood glucose regulation. Results: Our IEFMN-based system demonstrated high sensitivity, selectivity, and a wide response range in glucose detection at relatively low voltages. This effectively reduced interference from both external and internal active substances. The microneedle array ensured painless and minimally invasive skin penetration, while wired enzyme functionalization not only lowered sensing potential but also improved glucose detection accuracy. In vivo, experiments conducted in rats showed that the device could track subcutaneous glucose fluctuations in real-time and deliver insulin to regulate blood glucose levels. Conclusions: Our work suggests that the IEFMN-based system, developed for glucose sensing and insulin delivery, exhibits good performance during in vivo glucose detection and drug delivery. It holds the potential to contribute to real-time, intelligent, and controllable diabetes management.


Asunto(s)
Glucemia , Diabetes Mellitus , Ratas , Animales , Insulina , Automonitorización de la Glucosa Sanguínea , Glucosa , Oxígeno
3.
Cell Rep ; 42(11): 113352, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37948180

RESUMEN

By sorting receptor tyrosine kinases into endolysosomes, the endosomal sorting complexes required for transport (ESCRTs) are thought to attenuate oncogenic signaling in tumor cells. Paradoxically, ESCRT members are upregulated in tumors. Here, we show that disruption of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a pivotal ESCRT component, inhibited tumor growth by promoting CD8+ T cell infiltration in melanoma and colon cancer mouse models. HRS ablation led to misfolded protein accumulation and triggered endoplasmic reticulum (ER) stress, resulting in the activation of the type I interferon pathway in an inositol-requiring enzyme-1α (IRE1α)/X-box binding protein 1 (XBP1)-dependent manner. HRS was upregulated in tumor cells with high tumor mutational burden (TMB). HRS expression associates with the response to PD-L1/PD-1 blockade therapy in melanoma patients with high TMB tumors. HRS ablation sensitized anti-PD-1 treatment in mouse melanoma models. Our study shows a mechanism by which tumor cells with high TMB evade immune surveillance and suggests HRS as a promising target to improve immunotherapy.


Asunto(s)
Melanoma , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/metabolismo , Proteostasis , Escape del Tumor , Melanoma/patología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Interferones/metabolismo
4.
Cell Rep ; 42(10): 113224, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37805922

RESUMEN

Macrophages play a pivotal role in tumor immunity. We report that reprogramming of macrophages to tumor-associated macrophages (TAMs) promotes the secretion of exosomes. Mechanistically, increased exosome secretion is driven by MADD, which is phosphorylated by Akt upon TAM induction and activates Rab27a. TAM exosomes carry high levels of programmed death-ligand 1 (PD-L1) and potently suppress the proliferation and function of CD8+ T cells. Analysis of patient melanoma tissues indicates that TAM exosomes contribute significantly to CD8+ T cell suppression. Single-cell RNA sequencing analysis showed that exosome-related genes are highly expressed in macrophages in melanoma; TAM-specific RAB27A expression inversely correlates with CD8+ T cell infiltration. In a murine melanoma model, lipid nanoparticle delivery of small interfering RNAs (siRNAs) targeting macrophage RAB27A led to better T cell activation and sensitized tumors to anti-programmed cell death protein 1 (PD-1) treatment. Our study demonstrates tumors use TAM exosomes to combat CD8 T cells and suggests targeting TAM exosomes as a potential strategy to improve immunotherapies.


Asunto(s)
Exosomas , Melanoma , Humanos , Ratones , Animales , Macrófagos Asociados a Tumores/metabolismo , Linfocitos T CD8-positivos , Regulación hacia Arriba , Exosomas/metabolismo , ARN Interferente Pequeño/metabolismo , Melanoma/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Antígeno B7-H1/metabolismo
5.
Adv Sci (Weinh) ; 10(33): e2303619, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37802976

RESUMEN

Extracellular vesicles (EVs) have emerged as a promising source of biomarkers for disease diagnosis. However, current diagnostic methods for EVs present formidable challenges, given the low expression levels of biomarkers carried by EV samples, as well as their complex physical and biological properties. Herein, a highly sensitive double digital assay is developed that allows for the absolute quantification of individual molecules from a single EV. Because the relative abundance of proteins is low for a single EV, tyramide signal amplification (TSA) is integrated to increase the fluorescent signal readout for evaluation. With the integrative microfluidic technology, the technology's ability to compartmentalize single EVs is successfully demonstrated, proving the technology's digital partitioning capacity. Then the device is applied to detect single PD-L1 proteins from single EVs derived from a melanoma cell line and it is discovered that there are ≈2.7 molecules expressed per EV, demonstrating the applicability of the system for profiling important prognostic and diagnostic cancer biomarkers for therapy response, metastatic status, and tumor progression. The ability to accurately quantify protein molecules of rare abundance from individual EVs will shed light on the understanding of EV heterogeneity and discovery of EV subtypes as new biomarkers.


Asunto(s)
Biomarcadores de Tumor , Vesículas Extracelulares , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Proteínas/metabolismo , Microfluídica , Vesículas Extracelulares/metabolismo
6.
Acta Biochim Pol ; 70(2): 239-246, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37068178

RESUMEN

OBJECTIVE: Sorafenib is the first-line treatment for hepatocellular carcinoma (HCC), but its efficacy is limited by the drug resistance of HCC cells. MiR-375 has been shown to be an inhibitor of autophagy that contributes to sorafenib resistance of HCC cells. In this context, this study probed into the unaddressed molecular target of miR-375 in inhibiting the autophagy of HCC cells under sorafenib treatment. METHODS: Western blotting and qRT-PCR (quantitative reverse transcription-polymerase chain reaction) have been applied to measure the expressions of miR-375 and SIRT5 in parental HCC cells (HepG2 and Huh7) and sorafenib-resistant HCC cells (HepG2/so and Huh7/so). HepG2/so cells were accordingly transfected with miR-375 mimic, miR-375 inhibitor, sh-SIRT5, pcDNA3.1-SIRT5 or negative control. Expressions of p62, LC3I and LC3II in HCC cells have been measured by Western blotting. Viability and apoptosis of HCC cells have been assessed by CCK-8 (cell counting kit 8) and flow cytometry respectively. Bioinformatics techniques and dual-luciferase reporter assay have been used to predict and verify the targeting relationship between miR-375 and SIRT5. RESULTS: MiR-375 was under-expressed and SIRT5 was over-expressed in HCC cells. An autophagy inhibitor impaired the survival of HepG2/so cells transfected with miR-375 inhibitor. An autophagy activator enhanced the drug resistance of HepG2/so cells transfected with miR-375 mimic. MiR-375 suppressed the drug resistance of HepG2/so cells by inhibiting autophagy. SIRT5 enhanced the drug resistance of HepG2/so cells by promoting autophagy and it could be targeted by miR-375. CONCLUSION: MiR-375 suppresses autophagy to attenuate the sorafenib resistance of HCC cells by regulating SIRT5. The findings of this study may provide new therapeutic targets for treating HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Proliferación Celular , Línea Celular Tumoral , Células Hep G2 , Autofagia/genética , Regulación Neoplásica de la Expresión Génica
7.
Cancer Res ; 83(16): 2790-2806, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37115855

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable success in the treatment of hematologic malignancies. Unfortunately, it has limited efficacy against solid tumors, even when the targeted antigens are well expressed. A better understanding of the underlying mechanisms of CAR T-cell therapy resistance in solid tumors is necessary to develop strategies to improve efficacy. Here we report that solid tumors release small extracellular vesicles (sEV) that carry both targeted tumor antigens and the immune checkpoint protein PD-L1. These sEVs acted as cell-free functional units to preferentially interact with cognate CAR T cells and efficiently inhibited their proliferation, migration, and function. In syngeneic mouse tumor models, blocking tumor sEV secretion not only boosted the infiltration and antitumor activity of CAR T cells but also improved endogenous antitumor immunity. These results suggest that solid tumors use sEVs as an active defense mechanism to resist CAR T cells and implicate tumor sEVs as a potential therapeutic target to optimize CAR T-cell therapy against solid tumors. SIGNIFICANCE: Small extracellular vesicles secreted by solid tumors inhibit CAR T cells, which provide a molecular explanation for CAR T-cell resistance and suggests that strategies targeting exosome secretion may enhance CAR T-cell efficacy. See related commentary by Ortiz-Espinosa and Srivastava, p. 2637.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Neoplasias/metabolismo , Linfocitos T , Inmunoterapia Adoptiva/métodos , Antígenos de Neoplasias , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Receptores de Antígenos de Linfocitos T
8.
Microsyst Nanoeng ; 9: 25, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910258

RESUMEN

Monitoring human health is of considerable significance in biomedicine. In particular, the ion concentrations in blood are important reference indicators related to many diseases. Microneedle array-based sensors have enabled promising breakthroughs in continuous health monitoring due to their minimally invasive nature. In this study, we developed a microneedle sensing-array integrated system to continuously detect subcutaneous ions to monitor human health status in real time based on a fabrication strategy for assembling planar microneedle sheets to form 3D microneedle arrays. The limitations of preparing 3D microneedle structures with multiple electrode channels were addressed by assembling planar microneedle sheets fabricated via laser micromachining; the challenges of modifying closely spaced microneedle tips into different functionalized types of electrodes were avoided. The microneedle sensing system was sufficiently sensitive for detecting real-time changes in Ca2+, K+, and Na+ concentrations, and it exhibited good detection performance. The in vivo results showed that the ion-sensing microneedle array successfully monitored the fluctuations in Ca2+, K+, and Na+ in the interstitial fluids of rats in real time. By using an integrated circuit design, we constructed the proposed microneedle sensor into a wearable integrated monitoring system. The integrated system could potentially provide information feedback for diseases related to physiological ion changes.

9.
Microsyst Nanoeng ; 9: 35, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36987502

RESUMEN

COVID-19 has seriously threatened public health, and transdermal vaccination is an effective way to prevent pathogen infection. Microneedles (MNs) can damage the stratum corneum to allow passive diffusion of vaccine macromolecules, but the delivery efficiency is low, while iontophoresis can actively promote transdermal delivery but fails to transport vaccine macromolecules due to the barrier of the stratum corneum. Herein, we developed a wearable iontophoresis-driven MN patch and its iontophoresis-driven device for active and efficient transdermal vaccine macromolecule delivery. Polyacrylamide/chitosan hydrogels with good biocompatibility, excellent conductivity, high elasticity, and a large loading capacity were prepared as the key component for vaccine storage and active iontophoresis. The transdermal vaccine delivery strategy of the iontophoresis-driven MN patch is "press and poke, iontophoresis-driven delivery, and immune response". We demonstrated that the synergistic effect of MN puncture and iontophoresis significantly promoted transdermal vaccine delivery efficiency. In vitro experiments showed that the amount of ovalbumin delivered transdermally using the iontophoresis-driven MN patch could be controlled by the iontophoresis current. In vivo immunization studies in BALB/c mice demonstrated that transdermal inoculation of ovalbumin using an iontophoresis-driven MN patch induced an effective immune response that was even stronger than that of traditional intramuscular injection. Moreover, there was little concern about the biosafety of the iontophoresis-driven MN patch. This delivery system has a low cost, is user-friendly, and displays active delivery, showing great potential for vaccine self-administration at home.

10.
Artículo en Inglés | MEDLINE | ID: mdl-35239490

RESUMEN

Identifying drug phenotypic effects, including therapeutic effects and adverse drug reactions (ADRs), is an inseparable part for evaluating the potentiality of new drug candidates (NDCs). However, current computational methods for predicting phenotypic effects of NDCs are mainly based on the overall structure of an NDC or a related target. These approaches often lead to inconsistencies between the structures and functions and limit the prediction space of NDCs. In this study, first, we constructed quantitative associations of substructure-domain, domain-ADR, and domain-ATC (Anatomical Therapeutic Chemical Classification System code) through L1LOG and L1SVM machine learning models. These associations represent relationships between phenotypes (ADRs and ATCs) and local structures of drugs and proteins. Then, based on these established associations, substructure-phenotype relationships were constructed which were utilized to quantify drug-phenotype relationships. Thus, this approach could achieve high-throughput and effective evaluations of the druggability of NDCs by referring to the established substructure-phenotype relationships and structural information of NDCs without additional prior knowledge. Using this computational pipeline, 83,205 drug-ATC relationships (including 1,479 drugs and 178 ATCs) and 306,421 drug-ADR relationships (including 1,752 drugs and 454 ADRs) were predicted in total. The prediction results were validated at four levels: five-fold cross validation, public databases, literature, and molecular docking. Furthermore, three case studies demonstrated the feasibility of our method. 79 ATCs and 269 ADRs were predicted to be related to Maraviroc, an approved drug, including the existing antiviral effect in clinical use. Additionally, we also found risk substructures of severe ADRs, for example, SUB215 (>= 1, saturated or only aromatic carbon ring size 7) can result in shock. And we analyzed the mechanism of action (MOA) of interested drugs based on the established drug-substructure-domain-protein associations. In a word, this approach through establishing drug-substructure-phenotype relationships can achieve quantitative prediction of phenotypes for a given NDC or drug without any prior knowledge except its structure information. Using that way, we can directly obtain the relationships between substructure and phenotype of a compound, which is more convenient to analyze the phenotypic mechanism of drugs and accelerate the process of rational drug design.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Bases de Datos Factuales , Aprendizaje Automático , Fenotipo
11.
Sci Adv ; 8(50): eabo6900, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36516258

RESUMEN

Integrated systems for diabetic theranostics present advanced technology to regulate diabetes yet still have critical challenges in terms of accuracy, long-term monitoring, and minimal invasiveness. Inspired by the feature and functions of animal masticatory system, we presented a biomimetic microneedle theranostic platform (MNTP) for intelligent and precise management of diabetes. The MNTP was supported by a miniatured circuit, which used microneedle arrays for on-demand skin penetration, enabling interstitial fluid exudation for simultaneous detection of glucose and physiological ions, and subcutaneous insulin delivery. Interstitial fluid exudation enabled sensing in oxygen-rich environment via the incorporated epidermal sensor functionalized with hybrid carbon nanomaterials. This feature addressed the biosafety issues due to implanted electrodes and the "oxygen-deficit" issues in vivo. The MNTP was demonstrated to accurately detect glucose and ions and deliver insulin to regulate hyperglycemia. The biomimetic and intelligent features of the MNTP endowed it as a highly advanced system for diabetes therapy.

12.
Front Med (Lausanne) ; 9: 1032256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507511

RESUMEN

Background: 5-Fluorouracil (5-FU) is one of the most common chemotherapy drugs used to treat colorectal cancer (CRC), which often develops resistance in more than 15% of patients. Curcumin, an active component of Curcuma longa, has been reported to show antitumor activity in CRC and, furthermore, enhance the effect of chemotherapy against colorectal cancer cells. However, the molecular mechanisms underlying the sensitizing effect of curcumin on 5-FU have not been largely elucidated. In this study, we aimed to systematically investigate the role of curcumin as a chemosensitizer for the treatment of CRC, along with the key events responsible for its pharmaceutical effect, which may lead to better clinical outcomes. Methods: A high-resolution 2DE-based proteomics approach was used to characterize global protein expression patterns in CRC cells treated with 5-FU both in combination with curcumin or without. The differentially expressed proteins were obtained from the 2DE analysis and subsequently identified by MALDI-TOF MS or nano-ESI-MS/MS, some of which were validated by the Western blot. Intracellular reactive oxygen species (ROS) were measured to assess the change in the redox environment resulting from the drug treatment. Results: A series of proteins with altered abundances were detected and identified by MALDI-TOF or nano-MS/MS. From a total of 512 isolated proteins, 22 proteins were found to be upregulated and 6 proteins were downregulated. Intracellular ROS was significantly elevated after curcumin treatment. Furthermore, mass spectrometry data revealed that some of the proteins appeared to have more oxidized forms upon curcumin treatment, suggesting a direct role for ROS in the chemosensitizing effect of curcumin. Conclusion: The effect of curcumin in enhancing chemosensitivity to 5-FU is a complex phenomenon made up of several mechanisms, including enhancement of the intracellular level of ROS. Our findings presented here could provide clues for a further study aimed at elucidating the mechanisms underlying the chemosensitizing effect of curcumin.

13.
Front Oncol ; 12: 911856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313731

RESUMEN

Colorectal cancer (CRC) is the third most common malignancy in the world and one of the leading causes of cancer death; its incidence is still increasing in most countries. The early diagnostic accuracy of CRC is low, and the metastasis rate is high, resulting in a low survival rate of advanced patients. MicroRNAs (miRNAs) are a small class of noncoding RNAs that can inhibit mRNA translation and trigger mRNA degradation, and can affect a variety of cellular and molecular targets. Numerous studies have shown that miRNAs are related to tumour progression, immune system activity, anticancer drug resistance, and the tumour microenvironment. Dysregulation of miRNAs occurs in a variety of malignancies, including CRC. In this review, we summarize the recent research progress of miRNAs, their roles in tumour progression and metastasis, and their clinical value as potential biomarkers or therapeutic targets for CRC. Furthermore, we combined the roles of miRNAs in tumorigenesis and development with the therapeutic strategies of CRC patients, which will provide new ideas for the diagnosis and treatment of CRC.

14.
Drug Discov Today ; 27(11): 103356, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36113834

RESUMEN

Molecular fingerprints are used to represent chemical (structural, physicochemical, etc.) properties of large-scale chemical sets in a low computational cost way. They have a prominent role in transforming chemical data sets into consistent input formats (bit strings or numeric values) suitable for in silico approaches. In this review, we summarize and classify common and state-of-the-art fingerprints into eight different types (dictionary based, circular, topological, pharmacophore, protein-ligand interaction, shape based, reinforced, and multi). We also highlight applications of fingerprints in early drug research and development (R&D). Thus, this review provides a guide for the selection of appropriate fingerprints of compounds (or ligand-protein complexes) for use in drug R&D.

15.
Comput Intell Neurosci ; 2022: 7623215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093483

RESUMEN

In the practice of power line engineering, navigation and positioning technology is often used in the fields of information collection and analysis, optimized line design, and deformation monitoring. Compared with traditional measurement technology, it has the characteristics of high precision and high reliability. In order to realize the measurement of abnormal displacement of power lines, improve the efficiency and quality of monitoring, and reduce the occurrence of faults, firstly, this study introduces the basic theory of artificial neural network (ANN). The core algorithm of the ANN-BP (back propagation) neural network has been improved. The improved algorithm is used to improve the BeiDou Navigation Satellite System (BDS). The improved and the unimproved BDS are used to solve the collected related data. The results show that the geometric dilution of precision (GDOP) values obtained by conventional BDS are small, all within the range of less than 4. After the introduction of the BP neural network into the system, the geometric space distribution of positioning satellites is improved, the GDOP is reduced, the reliability and availability of satellite positioning are enhanced, and the accuracy requirements are met. The accuracy of the measured data positioning results of the two systems has reached the cm level. There is not much difference between the processing results of the two modes. Among them, the Z direction accuracy has the largest difference, which is 2.5 cm. The introduction of the BP neural network has improved the spatial combination structure, and the positioning results in the three directions of X, Y, and Z are all better. From the perspective of root mean square (RMS), the RMS fluctuation of the simulation results obtained by observing the conventional BDS is large. The RMS value of BDS displacement based on the BP neural network is smaller, and the change is gentle. With the increase in the number of epochs and the increase in the number of simulations, its value is also more convergent. These data show that the quality of BDS observations based on the BP neural network is significantly better. These contents will effectively improve the monitoring accuracy and operational reliability of the system and have important practical significance and application value.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Simulación por Computador , Reproducibilidad de los Resultados , Tecnología
16.
Colloids Surf B Biointerfaces ; 218: 112765, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35981470

RESUMEN

Precise molecular engineering of AIEgens-based cationic delivery systems for high transfection efficiency (TE) and effective photodynamic therapy (PDT) holds a huge potential for cancer treatment. Herein, three amphiphiles (DT-C6/8/12-M) consisting of di(triazole-[12]aneN3) (M) and 1,1-dicyano-2-phenyl-2-(4-diphenylamino)phenyl-ethylene (DT) units have been developed to achieve luminescent tracking, efficient TE, and effective PDT in vitro and in vivo. These compounds exhibited strong aggregated induced emission (AIE) at 630 nm and mega Stokes shifts of up to 160 nm. They were able to bind DNA into nanoparticles with suitable sizes, positive surface potential, and good biocompatibility in the presence of DOPE. Among them, vector DT-C12-M/DOPE with n-dodecyl linker achieved a transfection efficiency as high as 42.3 folds that of Lipo2000 in PC-3 cell lines. DT-C12-M/DOPE exhibited the capability of successful endo/lysosomal escape and rapid nuclear delivery of pDNA, and the gene delivery process was clearly monitored via confocal laser scanning microscopy. Moreover, efficient reactive oxygen species (ROS) generation by DT-C12-M upon light irradiation led to effective PDT in vitro . We further show that combination of p53 gene therapy and PDT dramatically enhanced cancer therapeutic outcome in vivo. This "three birds, one stone" strategy offers a novel and promising approach for real-time tracking of gene delivery and better cancer treatment.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , ADN/genética , Etilenos , Terapia Genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Especies Reactivas de Oxígeno , Triazoles , Proteína p53 Supresora de Tumor
17.
J Mater Chem B ; 10(28): 5430-5438, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35775960

RESUMEN

The construction of non-viral gene delivery faces two major challenges: cytotoxicity caused by high cationic charge units and easy degradation by lysosomes. Herein, highly water-dispersible polymeric carbon nitride (PCN) nanosheets were utilized as the core to construct a light-controlled non-cationic gene delivery system with sufficient lysosomal escape ability. In this system, these nanosheets exhibited efficient DNA condensation, outstanding biocompatibility, transfection tracking, light responsiveness and high transfection efficiency. Once PCN-DNA was taken up by the tumor cells, the accumulated ROS generated by photosensitizers (PSs) under light irradiation would destroy the structure of lysosomes, promote the escape of PCN-DNA and increase the efficiency of gene transfection. Simultaneously, the gene transfection process could be tracked in real time through fluorescence imaging technology, which was conducive to investigate the transfection mechanism. In vitro and in vivo experiments further confirmed that PCN nanosheets loaded with the P53 gene were beneficial to the regeneration of the P53 apoptotic pathway, increased tumor sensitivity to PSs, and further induced tumor cell apoptosis. In summary, the highly water-dispersible PCN nanosheets were applied to light-controlled self-escaping gene delivery for the first time, and tumor gene therapy was successfully realized.


Asunto(s)
Neoplasias , Humanos , Cationes/química , ADN/química , Lisosomas/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Nitrilos , Polímeros/química , Agua
19.
Scand J Gastroenterol ; 57(12): 1503-1508, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35758188

RESUMEN

BACKGROUND: The selection of endoscopic treatments for small rectal neuroendocrine tumors is controversial. OBJECTIVE: To retrospectively compare the effectiveness and safety of precut endoscopic mucosal resection (EMR-P) and endoscopic submucosal dissection (ESD) for small rectal neuroendocrine tumors (NETs). METHODS: Data from 98 patients with small rectal NETs who were hospitalized at Shenzhen Second People's Hospital between August 2014 and November 2021 were collected. The en bloc resection rate, pathological complete resection rate, radical resection rate, operation time, adverse event rate and hospital stay were compared between the two groups. RESULTS: The operation time in the EMR-P group was significantly shorter than that in the ESD group. The median hospital stay in the EMR-P group was also significantly shorter than that in the ESD group. There were no significant differences between the two groups in terms of the en bloc resection, complete resection or radical resection rates. There was also no significant difference in the incidence of adverse events between the two groups. The delayed bleeding and delayed perforation rates of the two groups were improved after conservative treatment without surgery. There was no significant difference in the rate of positive vertical margins and horizontal margins between the EMR-P group and the ESD group. No local recurrence or metastasis was found during follow-up. CONCLUSION: EMR-P is an effective and safe endoscopic treatment for rectal NETs with a diameter of less than 10 mm. EMR-P is a significantly shorter procedure and requires a shorter hospital stay than ESD. EMR-P does not increase the cut margin positivity rate.


Asunto(s)
Resección Endoscópica de la Mucosa , Tumores Neuroendocrinos , Neoplasias del Recto , Humanos , Resección Endoscópica de la Mucosa/efectos adversos , Resección Endoscópica de la Mucosa/métodos , Tumores Neuroendocrinos/cirugía , Tumores Neuroendocrinos/patología , Estudios Retrospectivos , Resultado del Tratamiento , Neoplasias del Recto/cirugía , Neoplasias del Recto/patología , Márgenes de Escisión , Mucosa Intestinal/patología , Recurrencia Local de Neoplasia/epidemiología
20.
Colloids Surf B Biointerfaces ; 217: 112651, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35759892

RESUMEN

Gene therapy holds great promise for treatment of gene-associated diseases. However, safe and successful clinical application urgently requires further advancement of constructing efficient delivery systems. Herein, three amphiphilic peptide dendrimers (TTC-L-KRR/KKK/KHH), containing the natural amino acid residues (lysine K, arginine R, and histidine H) and AIE-based photosensitizer (tetraphenylethenethiophene modified cyanoacrylate, TTC) modified with alkyl chain (L), have been designed and prepared for improving therapeutic potency via the combination of gene therapy (GT) and photodynamic therapy (PDT). All three compounds possessed typical aggregation-induced emission (AIE) characteristics and ultralow critical micelle concentrations (CMCs). The liposomes consisting of amphiphilic peptide dendrimers and dioleoylphosphatidylethanolamine (DOPE) can effectively bind DNA into nanoparticles with appropriate sizes, regular morphology and good biocompatibility. Among them, liposomes TTC-L-KKK/DOPE exhibited the highest transfection efficiency up to 5.7-fold as compared with Lipo2000 in HeLa cells. Meanwhile, rapid endocytosis, successful endo/lysosomal escape, gene release and rapid nuclear delivery of DNA revealed the superiority of liposomes TTC-L-KKK/DOPE during gene delivery process. More importantly, efficient reactive oxygen species (ROS) generation by TTC-L-KKK/DOPE led to effective PDT, thus improving therapeutic potency via combining with p53 mediated-gene therapy. Our work brought novel insight and direction for the construction of bio-safe and bio-imaging liposome as the multifunctional nonviral gene vectors for the effective combined gene/photodynamic therapies.


Asunto(s)
Dendrímeros , Neoplasias , Fotoquimioterapia , ADN , Dendrímeros/química , Células HeLa , Humanos , Liposomas/química , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Péptidos/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA