Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8077, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277642

RESUMEN

Abscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination. Here, we reveal that stabilization of PYL dimer can relieve ABA-induced inhibition of seed germination using chemical genetic approaches. Di-nitrobensulfamide (DBSA), a computationally designed chemical probe, yields around ten-fold improvement in receptor affinity relative to ABA. DBSA reverses ABA-induced inhibition of seed germination mainly through dimeric receptors and recovers the expression of ABA-responsive genes. DBSA maintains PYR1 in dimeric state during protein oligomeric state experiment. X-ray crystallography shows that DBSA targets a pocket in PYL dimer interface and may stabilize PYL dimer by forming hydrogen networks. Our results illustrate the potential of PYL dimer stabilization in preventing ABA-induced seed germination inhibition.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Germinación , Semillas , Germinación/efectos de los fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/genética , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Cristalografía por Rayos X , Sulfonamidas/farmacología , Sulfonamidas/química , Proteínas de Transporte de Membrana
2.
Insect Sci ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012243

RESUMEN

Successful bisexual reproduction requires interactions between males and females. Male-derived seminal fluid proteins (SFPs) transferred to females during mating profoundly affect females from pre- to post-mating, and the subsequent shift in female physiology enhances their fertility. SFPs have important evolutionary implications for the fitness of many insects. However, little is known about how females respond to male SFPs. In this study, we identified a male-derived SFP-phospholipase A2 (PLA2) in Ophraella communa. PLA2 is a vital enzyme in eicosanoid biosynthesis; however, it has not been identified as an insect SFP. We found that OcPLA2 is specifically expressed in males, especially in the male accessory glands (MAGs); it is transferred to the female during mating and functions as an SFP to enhance fertility. The expression of a female-derived gene encoding the WD repeat-containing protein 46 (WD46) was upregulated when OcPLA2 entered the female reproductive tract, and this contributed to female egg production by increasing triacylglycerol lipase (TGL) gene expression and the triglyceride (TG) content. This is the first study to identify PLA2 as an SFP in insects. Our findings also shed light on the regulatory role of OcPLA2 in beetle reproduction; the expression of OcPLA2 is initially correlated with female WD46 expression and later with the decline in TGL gene expression and the TG content. This represents a unique mechanism of reproductive regulation by an SFP.

3.
Sci Rep ; 14(1): 17212, 2024 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060315

RESUMEN

Alternative splicing is a crucial process in multicellular eukaryote, facilitated by the assembly of spliceosomal complexes comprising numerous small ribonucleoproteins. At an early stage, U1C is thought to be required for 5' splice site recognition and base pairing. However, a systematic analysis of the U1C gene family in response to developmental cues and stress conditions has not yet been conducted in plants. This study identified 114 U1C genes in 72 plant species using basic bioinformatics analyses. Phylogenetic analysis was used to compare gene and protein structures, promoter motifs, and tissue- and stress-specific expression levels, revealing their functional commonalities or diversity in response to developmental cues, such as embryonic expression, or stress treatments, including drought and heat. Fluorescence quantitative expression analysis showed that U1C gene expression changed under salt, low temperature, drought, and Cd stress in rice seedlings. However, gene expression in shoots and roots was not consistent under different stress conditions, suggesting a complex regulatory mechanism. This research provides foundational insights into the U1C gene family's role in plant development and stress responses, highlighting potential targets for future studies.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolución Molecular , Oryza/genética , Oryza/metabolismo , Empalme Alternativo , Sequías , Regiones Promotoras Genéticas
4.
J Agric Food Chem ; 72(31): 17649-17657, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39047266

RESUMEN

Oxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound b24 was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.069 mg/L, which was comparable to that of OXA (88%). Furthermore, it showed better activity against potato late blight (PLB) than other derivatives of indole. The computational results showed that the R-conformation of b24 should be the dominant conformation binding to PcOSBP. The results of the present work indicate that the 3-fluorine-indole ring is a favorable fragment to increasing the electronic energy when binding with PcOSBP. Furthermore, compound b24 could be used as a lead compound for the discovery of new OSBP inhibitors.


Asunto(s)
Fungicidas Industriales , Enfermedades de las Plantas , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Relación Estructura-Actividad , Indoles/química , Indoles/farmacología , Cucumis sativus/química , Cucumis sativus/microbiología , Oomicetos/efectos de los fármacos , Solanum tuberosum/química , Estructura Molecular , Simulación del Acoplamiento Molecular , Descubrimiento de Drogas , Hidrocarburos Fluorados , Pirazoles
5.
Sci Data ; 11(1): 735, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971852

RESUMEN

The leaf beetle Ophraella communa LeSage (Coleoptera: Chrysomelidae) is an effective biological control agent of the common ragweed. Here, we assembled a chromosome-level genome of the O. communa by combining Illumina, Nanopore, and Hi-C sequencing technologies. The genome size of the final genome assembly is 733.1 Mb, encompassing 17 chromosomes, with an improved contig N50 of 7.05 Mb compared to the original version. Genome annotation reveals 25,873 protein-coding genes, with functional annotations available for 22,084 genes (85.35%). Non-coding sequence annotation identified 204 rRNAs, 626 tRNAs, and 1791 small RNAs. Repetitive elements occupy 414.41 Mb, constituting 57.76% of the genome. This high-quality genome is fundamental for advancing biological control strategies employing O. communa.


Asunto(s)
Escarabajos , Genoma de los Insectos , Escarabajos/genética , Animales , Anotación de Secuencia Molecular , Cromosomas de Insectos
6.
Anal Chim Acta ; 1309: 342687, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772659

RESUMEN

BACKGROUND: Cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), as three major biothiols are involved in a variety of physiological processes and play a crucial role in plant growth. Abnormal levels of Cys can cause plants to fail to grow properly. To date, although a very large number of fluorescent probes have been reported for the detection of biothiols, very few of them can be used for the selective discrimination of Cys from GSH and Hcy due to their structural similarity, and only a few of them can be used for plant imaging. RESULTS: Here, three fluorescent probes (o-/m-/p-TMA) based on TMN fluorophore and the ortho-/meta-/para-substituted maleimide recognition groups were constructed to investigate the selective response effect of Cys. Compared to the o-/m-TMA, p-TMA can selectively detect Cys over GSH and Hcy with a rapid response time (10 min) and a low detection limit (0.26 µM). The theoretical calculation confirmed that the intermediate p-TMA-Cys-int has shorter interatomic reaction distances (3.827 Å) compared to o-/m-TMA-Cys (5.533/5.287 Å), making it more suitable for further transcyclization reactions. Additionally, p-TMA has been employed for selective tracking of exogenous and endogenous Cys in Arabidopsis thaliana using both single-/two-photon fluorescence imaging. Furthermore, single cell walls produced obvious two-photon fluorescence signals, indicating that p-TMA can be used for high-concentration Cys analysis in single cells. Surprisingly, p-TMA can be used as a fluorescent dye for protein staining in SDS-PAGE with higher sensitivity (7.49 µg/mL) than classical Coomassie brilliant blue (14.11 µg/mL). SIGNIFICANCE: The outstanding properties of p-TMA make it a promising multifunctional molecular tool for the highly selective detection of Cys over GSH and Hcy in various complex environments, including water solutions, zebrafish, and plants. Additionally, it has the potential to be developed as a fluorescent dye for a simple and fast SDS-PAGE fluorescence staining method.


Asunto(s)
Cisteína , Electroforesis en Gel de Poliacrilamida , Colorantes Fluorescentes , Glutatión , Homocisteína , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cisteína/análisis , Cisteína/química , Glutatión/análisis , Glutatión/química , Homocisteína/análisis , Homocisteína/química , Animales , Fotones , Imagen Óptica , Arabidopsis/química , Humanos , Ciclización , Pez Cebra
7.
Front Physiol ; 15: 1354530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440345

RESUMEN

The melon fly, Bactrocera cucurbitae (Coquillett) (Tephritidae: Diptera), is an invasive pest that poses a significant threat to agriculture in Africa and other regions. Flies are known to use their olfactory systems to recognise environmental chemical cues. However, the molecular components of the chemosensory system of B. cucurbitae are poorly characterised. To address this knowledge gap, we have used next-generation sequencing to analyse the antenna transcriptomes of sexually immature B. cucurbitae adults. The results have identified 160 potential chemosensory genes, including 35 odourant-binding proteins (OBPs), one chemosensory protein (CSP), three sensory neuron membrane proteins (SNMPs), 70 odourant receptors (ORs), 30 ionotropic receptors (IRs), and 21 gustatory receptors (GRs). Quantitative real-time polymerase chain reaction quantitative polymerase chain reaction was used to validate the results by assessing the expression profiles of 25 ORs and 15 OBPs. Notably, high expression levels for BcucOBP5/9/10/18/21/23/26 were observed in both the female and male antennae. Furthermore, BcucOROrco/6/7/9/13/15/25/27/28/42/62 exhibited biased expression in the male antennae, whereas BcucOR55 showed biased expression in the female antennae. This comprehensive investigation provides valuable insights into insect olfaction at the molecular level and will, thus, help to facilitate the development of enhanced pest management strategies in the future.

8.
J Agric Food Chem ; 72(11): 5671-5681, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38442746

RESUMEN

Neonicotinoids have been widely used to control pests with remarkable effectiveness. Excessive insecticides have led to serious insect resistance. Mutations of the nicotinic acetylcholine receptor (nAChR) are one of the reasons for neonicotinoid resistance conferred in various agricultural pests. Two mutations, V65I and V104I, were found in the nAChR ß1 subunit of two neonicotinoid-resistant aphid populations. However, the specific functions of the two mutations remain unclear. In this study, we cloned and identified four nAChR subunits (α1, α2, α8, and ß1) of thrips and found them to be highly homologous to the nAChR subunits of other insects. Subsequently, we successfully expressed two subtypes nAChR (α1/α2/α8/ß1 and α1/α8/ß1) by coinjecting three cofactors for the first time in thrips, and α1/α8/ß1 showed abundant current rapidly. Acetylcholine, neonicotinoids, and sulfoxaflor exhibited different activation capacities for the two subtypes of nAChRs. Finally, V65I was found to significantly reduce the binding ability of nAChR to neonicotinoids and sulfoxaflor through electrophysiology and computer simulations. V104I caused a decrease in agonist affinity (pEC50) but an increase in the efficacy (Imax) of nAChR against neonicotinoids and reduced the binding ability of nAChR to sulfoxaflor. This study provides theoretical and technical support for studying the molecular mechanisms of neonicotinoid resistance in pests.


Asunto(s)
Insecticidas , Piridinas , Receptores Nicotínicos , Compuestos de Azufre , Animales , Neonicotinoides/farmacología , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Insectos/metabolismo , Insecticidas/farmacología , Insecticidas/química , Mutación , Nitrocompuestos
9.
Angew Chem Int Ed Engl ; 63(15): e202319966, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38327168

RESUMEN

Albeit sonodynamic therapy (SDT) has achieved encouraging progress in microbial sterilization, the scarcity of guidelines for designing highly effective sonosensitizers and the intricate biofilm microenvironment (BME), substantially hamper the therapeutic efficacy against biofilm infections. To address the bottlenecks, we innovatively design a Ru(II) metallacycle-based sonosensitizer/sonocatalyst (named Ru-A3-TTD) to enhance the potency of sonotherapy by employing molecular engineering strategies tailored to BME. Our approach involves augmenting Ru-A3-TTD's production of ultrasonic-triggered reactive oxygen species (ROS), surpassing the performance of commercial sonosensitizers, through a straightforward but potent π-expansion approach. Within the BME, Ru-A3-TTD synergistically amplifies sonotherapeutic efficacy via triple-modulated approaches: (i) effective alleviation of hypoxia, leading to increased ROS generation, (ii) disruption of the antioxidant defense system, which shields ROS from glutathione consumption, and (iii) enhanced biofilm penetration, enabling ROS production in deep sites. Notably, Ru-A3-TTD sono-catalytically oxidizes NADPH, a critical coenzyme involved in antioxidant defenses. Consequently, Ru-A3-TTD demonstrates superior biofilm eradication potency against multidrug-resistant Escherichia coli compared to conventional clinical antibiotics, both in vitro and in vivo. To our knowledge, this study represents the pioneering instance of a supramolecular sonosensitizer/sonocatalyst. It provides valuable insights into the structure-activity relationship of sonosensitizers and paves a promising pathway for the treatment of biofilm infections.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Biopelículas , Coenzimas , Escherichia coli , Línea Celular Tumoral , Microambiente Tumoral
11.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38069395

RESUMEN

Zn2+-dependent histone deacetylases (HDACs) are enzymes that regulate gene expression by removing acetyl groups from histone proteins. These enzymes are essential in all living systems, playing key roles in cancer treatment and as potential pesticide targets. Previous phylogenetic analyses of HDAC in certain species have been published. However, their classification and evolutionary origins across biological kingdoms remain unclear, which limits our understanding of them. In this study, we collected the HDAC sequences from 1451 organisms and performed analyses. The HDACs are found to diverge into three classes and seven subclasses under divergent selection pressure. Most subclasses show species specificity, indicating that HDACs have evolved with high plasticity and diversification to adapt to different environmental conditions in different species. In contrast, HDAC1 and HDAC3, belonging to the oldest class, are conserved and crucial in major kingdoms of life, especially HDAC1. These findings lay the groundwork for the future application of HDACs.


Asunto(s)
Histonas , Zinc , Filogenia , Zinc/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo
12.
Sci Data ; 10(1): 848, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040744

RESUMEN

The fruit fly Zeugodacus tau (Diptera: Tephritidae) is a major pest of melons and other cucurbits in Southeast Asia. In this study, we used Illumina, Nanopore, and Hi-C sequencing technologies to assemble a reference genome of Z. tau at the chromosomal level. The assembled genome was 421.79 Mb and consisted of six chromosomes (one X-chromosome + five autosomes). The contig N50 was 4.23 Mb. We identified 20,922 protein-coding genes, of which 17,251 (82.45%) were functionally annotated. Additionally, we found 247 rRNAs, 435 tRNAs, 67 small nuclear RNAs, and 829 small RNAs in the genome. Repetitive elements accounted for 55.30 Mb (13.15%) of the genome. This high-quality genome assembly is valuable for evolutionary and genetic studies of Z. tau and its relative species.


Asunto(s)
Genoma de los Insectos , Tephritidae , Animales , Cromosomas , Anotación de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Tephritidae/genética
13.
Ecotoxicol Environ Saf ; 265: 115502, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742569

RESUMEN

In recent decades, the increasingly widespread application of chemical pesticides has exacerbated the emergence of insecticide resistance among insect pests. In this study, we examined the rapid response of bacteria in the midgut of the fruit fly Bactrocera tau (Walker) (Diptera: Tephritidae) to stress induced by the insecticides lambda-cyhalothrin and spinosad by analyzing the bacterial community structure and diversity in the midguts of 4-day-old B. tau. The results revealed that 4-day-old B. tau females were more resistant to lambda-cyhalothrin and spinosad than their 4-day-old male counterparts. Alpha- and beta-diversity analyses revealed no significant differences between male and female B. tau with respect to the diversity and richness of gut bacteria in response to the same treatments. In response to treatment with lambda-cyhalothrin and spinosad at lethal concentration 50 (LC50), we detected significant changes in the structure and diversity of the bacterial community in the midguts of both male and female B. tau. Particularly among the dominant bacterial genera, there were decreases in the relative abundances of Citrobacter, Enterobacter, Klebsiella, and Pectobacterium. Increases were observed in the relative abundances of Dysgonomonas, Erwinia, and Providencia. Our findings provide a theoretical basis for gaining a better understanding of the relationships between midgut bacteria and the insecticide resistance of B. tau.

14.
J Agric Food Chem ; 71(24): 9519-9527, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37286337

RESUMEN

Oomycetes, particularly those from the genus Phytophthora, are significant threats to global food security and natural ecosystems. Oxathiapiprolin (OXA) is an effective oomycete fungicide that targets an oxysterol binding protein (OSBP), while the binding mechanism of OXA is still unclear, which limits the pesticide design, induced by the low sequence identity of Phytophthora and template models. Herein, we generated the OSBP model of the well-reported Phytophthora capsici using AlphaFold 2 and studied the binding mechanism of OXA. Based on it, a series of OXA analogues were designed. Then, compound 2l, the most potent candidate, was successfully designed and synthesized, showing a control efficiency comparable to that of OXA. Moreover, field trial experiments showed that 2l exhibited nearly the same activity (72.4%) as OXA against cucumber downy mildew at 25 g/ha. The present work indicated that 2l could be used as a leading compound for the discovery of new OSBP fungicides.


Asunto(s)
Fungicidas Industriales , Phytophthora , Ecosistema , Enfermedades de las Plantas , Fungicidas Industriales/farmacología
15.
Drug Discov Today ; 28(5): 103546, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871844

RESUMEN

As major forces for modulating protein folding and molecular recognition, cation and π interactions are extensively identified in protein structures. They are even more competitive than hydrogen bonds in molecular recognition, thus, are vital in numerous biological processes. In this review, we introduce the methods for the identification and quantification of cation and π interactions, provide insights into the characteristics of cation and π interactions in the natural state, and reveal their biological function together with our developed database (Cation and π Interaction in Protein Data Bank; CIPDB; http://chemyang.ccnu.edu.cn/ccb/database/CIPDB). This review lays the foundation for the in-depth study of cation and π interactions and will guide the use of molecular design for drug discovery.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Modelos Moleculares , Proteínas/metabolismo , Cationes/química
16.
Microbiol Spectr ; : e0467722, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36861974

RESUMEN

The study of microorganisms in outer space has focused mainly on investigating phenotypic changes in microbial pathogens induced by factors encountered in space. This study aimed to investigate the effect of space exposure on a probiotic bacterium, Lacticaseibacillus rhamnosus Probio-M9. Probio-M9 cells were exposed to space in a spaceflight. Interestingly, our results showed that a substantial proportion of space-exposed mutants (35/100) exhibited a ropy phenotype, characterized by their larger colony sizes and an acquired ability to produce capsular polysaccharide (CPS), compared with the original Probio-M9 or the ground control isolates without space exposure. Whole-genome sequencing analyses on both the Illumina and PacBio platforms revealed a skewed distribution of single nucleotide polymorphisms (12/89 [13.5%]) toward the CPS gene cluster, particularly in the wze (ywqD) gene. The wze gene encodes a putative tyrosine-protein kinase that regulates CPS expression through substrate phosphorylation. Transcriptomics analysis of two space-exposed ropy mutants revealed increased expression in the wze gene relative to a ground control isolate. Finally, we showed that the acquired ropy phenotype (CPS-producing ability) and space-induced genomic changes could be stably inherited. Our findings confirmed that the wze gene directly influences the capacity for CPS production in Probio-M9, and space mutagenesis is a potential strategy for inducing stable physiological changes in probiotics. IMPORTANCE This work investigated the effect of space exposure on a probiotic bacterium, Lacticaseibacillus rhamnosus Probio-M9. Interestingly, the space-exposed bacteria became capable of producing capsular polysaccharide (CPS). Some probiotic-derived CPSs have nutraceutical potential and bioactive properties. They also enhance the survival of probiotics through the gastrointestinal transit and ultimately strengthen the probiotic effects. Space mutagenesis seems to be a promising strategy for inducing stable changes in probiotics, and the obtained high-CPS-yielding mutants are valuable resources for future applications.

17.
Chem Sci ; 14(11): 2901-2909, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36937588

RESUMEN

Although metallacycle-based photosensitizers have attracted increasing attention in biomedicine, their clinical application has been hindered by their inherent dark toxicity and unsatisfactory phototherapeutic efficiency. Herein, we employ a π-expansion strategy for ruthenium acceptors to develop a series of Ru(ii) metallacycles (Ru1-Ru4), while simultaneously reducing dark toxicity and enhancing phototoxicity, thus obtaining a high phototoxicity index (PI). These metallacycles enable deep-tissue (∼7 mm) fluorescence imaging and reactive oxygen species (ROS) production and exhibit remarkable anti-tumor activity even under hypoxic conditions. Notably, Ru4 has the lowest dark toxicity, highest ROS generation ability and an optimal PI (∼146). Theoretical calculations verify that Ru4 exhibits the largest steric bulk and the lowest singlet-triplet energy gap (ΔE ST, 0.62 eV). In vivo studies confirm that Ru4 allows for effective and safe phototherapy against A549 tumors. This work thus is expected to open a new avenue for the design of high-performance metal-based photosensitizers for potential clinical applications.

18.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982311

RESUMEN

The formation of mature mRNA requires cutting introns and splicing exons. The occurrence of splicing involves the participation of the spliceosome. Common spliceosomes mainly include five snRNPs: U1, U2, U4/U6, and U5. SF3a2, an essential component of spliceosome U2 snRNP, participates in splicing a series of genes. There is no definition of SF3a2 in plants. The paper elaborated on SF3a2s from a series of plants through protein sequence similarity. We constructed the evolutionary relationship of SF3a2s in plants. Moreover, we analyzed the similarities and differences in gene structure, protein structure, the cis-element of the promoter, and expression pattern; we predicted their interacting proteins and constructed their collinearity. We have preliminarily analyzed SF3a2s in plants and clarified the evolutionary relationship between different species; these studies can better serve for in-depth research on the members of the spliceosome in plants.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas , Empalmosomas , Empalmosomas/metabolismo , Filogenia , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , ARN Mensajero/metabolismo
19.
Front Genet ; 13: 873869, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118875

RESUMEN

The gene SYF2-an RNA splicing factor-can interact with Cyclin D-type binding protein 1 (GICP) in many biological processes, including splicing regulation, cell cycle regulation, and DNA damage repair. In our previous study we performed genome-wide identification and functional analysis of SYF2 in plant species. The phylogenetic relationships and expression profiles of SYF2 have not been systematically studied in animals, however. To this end, the gene structure, genes, and protein conserved motifs of 102 SYF2 homologous genes from 91 different animal species were systematically analyzed, along with conserved splicing sites in 45 representative vertebrate species. A differential comparative analysis of expression patterns in humans and mice was made. Molecular bioinformatics analysis of SYF2 showed the gene was conserved and functional in different animal species. In addition, expression pattern analysis found that SYF2 was highly expressed in hematopoietic stem cells, T cells, and lymphoid progenitor cells; in ovary, lung, and spleen; and in other cells and organs. This suggests that changes in SYF2 expression may be associated with disease development in these cells, tissues, or organs. In conclusion, our study analyzes the SYF2 disease resistance genes of different animal species through bioinformatics, reveals the relationship between the SYF2 genotype and the occurrence of certain diseases, and provides a theoretical basis for follow-up study of the relationship between the SYF2 gene and animal diseases.

20.
Arch Microbiol ; 204(10): 654, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175573

RESUMEN

Two bacterial strains were isolated from the breast milk of two healthy nursing mothers. The isolates were Gram-positive, catalase-negative, coccus-shaped, chain-forming organisms. Analysis of the 16S rRNA gene sequences of strain IMAU99125T shared 99.7 and 99.6% similarity with Streptococcus mitis ATCC 49456 T and Streptococcus pseudopneumoniae ATCC BAA-960 T, respectively. The nearly complete 16S rRNA gene sequences of IMAU99125T and IMAU99674 strains were very closely related (with only 0.06% difference between them). Sequence analysis of the gyrB and rpoB genes also indicated that IMAU99125T was closely related to S. mitis ATCC 49456 T (94.7% and 97.1%, respectively) and S. pseudopneumoniae ATCC BAA-960 T (94.4% and 97.1%, respectively). Average nucleotide identity (ANI) values between strain IMAU99125T and S. mitis ATCC 49456 T and S. pseudopneumoniae ATCC BAA-960 T, were 93.3% and 92.7%, respectively. Genome-to-genome distance (GGD) values between strain IMAU99125T and S. mitis ATCC 99125 T and S. pseudopneumoniae ATCC BAA-960 T were 53.4% (50.7-56.0) and 50.4% (47.7-53.0), respectively. The major fatty acids of the strain were C16:0 (51.4%). On the basis of the results of phenotypic and phylogenetic analyses, we propose that the two strains be classified as representing a novel species of the genus Streptococcus, namely Streptococcus humanilactis sp.nov. The type strain is IMAU99125T (= GDMCC 1.1876 T = KCTC 21157 T). The genome of Streptococcus humanilactis sp. nov. is comprised of 2,027,143 bp. The DNA G + C content of the strain is 40.0 mol%.


Asunto(s)
Leche Humana , Madres , Catalasa , Ácidos Grasos , Femenino , Humanos , Nucleótidos , Filogenia , ARN Ribosómico 16S/genética , Streptococcus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...