Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Hematol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177794

RESUMEN

Anemia is the most common symptom in patients with myelodysplastic syndromes (MDS). Programmed cell death of erythrocytes is one of the contributing factors to anemia. Ferroptosis is a newly identified form of iron-dependent cell death. The aim of this study is to investigate whether anemia in MDS patients is associated with ferroptosis of nucleated erythrocytes(NEs).We detected lipid peroxidation levels, Fe2+ contents, cell death rates, glutathione (GSH) and malondialdehyde (MDA) levels in bone marrow CD235a+ NEs of MDS patients. Expression levels of ferroptosis-related molecules (ACSL4, GPX4, and SLC7A11) were evaluated through qRT-PCR and Western Blotting. Correlation between these markers and clinical parameters were analyzed. To further substantiate that the mode of cell death with CD235a+ NEs of MDS patients was attributed to the ferroptosis pathway, we applied Fer-1 to inhibit ferroptosis. Cell viability was assessed using CCK8, and changes in ferroptosis-related indicators were simultaneously evaluated. We discover that the ferroptosis level of bone marrow NEs in MDS patients was increased, which is related to anemia and iron overload. Ferroptosis might be one of the causes of anemia in MDS patients.

2.
Int Immunopharmacol ; 141: 112902, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178519

RESUMEN

BACKGROUND: Prolonged alcohol consumption may lead to gastrointestinal tract dysfunction and cause abnormalities in the associated nervous system activity, thereby increasing the body's craving for alcohol. Lactobacillus casei is a probiotic that has been shown to reduce the incidence of alcohol-related diseases. However, it is unclear whether Lactobacillus casei can delay the development of alcohol dependence. METHODS: The chronic intermittent active drinking method was used to establish a mouse alcohol dependence model. The mice were randomly divided into 4 treatment groups, as follows: (1) Control group: two bottles of distilled water alternately, 0.2 mL/d saline gavage. (2) Alcohol group: alternating water and alcohol, 0.2 mL/d saline gavage. (3) Low group: alternating water and alcohol, 0.2 mL/d 1 × 108CFU of Lactobacillus casei by gavage. (4) High group: alternating water and alcohol, 0.2 mL/d 1 × 109CFU of Lactobacillus casei by gavage. The daily water consumption (mL), alcohol consumption (mL) and body weight of each mouse were recorded. After that, pathological changes in the intestines, brain tissues and serum of the experimental animals were detected, while changes in the intestinal flora of the mice were analysed by 16S rRNA sequencing. RESULTS: The Lactobacillus casei intervention did not produce a significant effect on body weight in alcohol-exposed mice (P>0.05), but significantly reduced alcohol preference in alcohol-exposed mice (P<0.05). Subsequent analyses showed that Lactobacillus casei significantly ameliorated intestinal, brain tissue, and systemic inflammatory responses in alcohol-exposed mice (P<0.05). 16S rRNA sequencing showed that alcohol-exposed mice treated with Lactobacillus casei exhibited a richer composition of intestinal microorganisms, such as f__Rikenellaceae, g__Alistipes_A_871400, and g__Bacteroides_H genera showed relative enrichment in the High group. CONCLUSION: By showing that Lactobacillus casei slows down alcohol preference and alleviates gut and brain tissue inflammation in alcohol-exposed mice, our findings provide a possible strategy: Lactobacillus casei may be able to serve as a potential target for the prevention and treatment of alcohol dependence.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39213617

RESUMEN

At present, it is very necessary to select and prepare suitable positive and negative electrode materials to fabricate high-performance asymmetric supercapacitors. Metal-organic frameworks (MOFs) have garnered significant attention in the energy storage field due to their high conductivity. As a branch, the zirconium organic framework (UIO-66) is a promising porous material due to its large specific surface area and abundant Zr centers. Graphene oxide (GO) and MXene are very suitable as substrate materials for conducting an MOF due to their abundant active sites and adjustable interlayer distance. The GO/MXene@NiZrP prepared through an in situ composite of GO and Mxene with the hydrothermal method and calcining method showed excellent electrochemical performance. Compared with the precursor UIO-66, the specific capacitance of the final product GO/MXene@NiZrP increases more than ten times, mainly because of its special layered porous structure, and GO/MXene@NiZrP has a larger specific surface area, pore volume, and surface defects caused by unstable Zr4+ than those of UIO-66. Using GO/MXene@NiZrP as the positive electrode and biochar (BC) as the negative electrode, an asymmetric supercapacitor, BC//GO/MXene@NiZrP, is assembled. After 10,000 cycles at a current density of 10 A g-1, the capacitance retention remains at 83.3%, showing excellent cycle stability.

4.
Pharm Res ; 41(7): 1521-1531, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955998

RESUMEN

PURPOSE: Employing polymer additives is an effective strategy to realize the manipulation of polymorphic transformation. However, the manipulation mechanism is still not clear, which limit the precise selection of polymeric excipients and the development of pharmaceutical formulations. METHODS: The solubility of cimetidine (CIM) in acetonitrile/water mixtures were measured. And the polymorphic transformation from CIM form A to form B with the addition of different polymers was monitored by Raman spectroscopy. Furthermore, the manipulation effect of polymers was determined based on the results of experiments and molecular simulations. RESULTS: The solubility of form A is consistently higher than that of form B, which indicate that form B is the thermodynamically stable form within the examined temperature range. The presence of polyvinylpyrrolidone (PVP) of a shorter chain length could have a stronger inhibitory effect on the phase transformation process of metastable form, whereas polyethylene glycol (PEG) had almost no impact. The nucleation kinetics experiments and molecular dynamic simulation results showed that only PVP molecules could significantly decrease the nucleation rate of CIM, due to the ability of reducing solute molecular diffusion and solute-solute molecular interaction. A combination of crystal growth rate measurements and calculations of the interaction energies between PVP and the crystal faces of CIM indicate that smaller molecular weight PVP can suppress crystal growth more effectively. CONCLUSION: PVP K16-18 has more impact on the stabilization of CIM form A and inhibition of the phase transformation process. The manipulation mechanism of polymer additives in the polymorphic transformation of CIM was proposed.


Asunto(s)
Cimetidina , Simulación de Dinámica Molecular , Povidona , Solubilidad , Cimetidina/química , Povidona/química , Polietilenglicoles/química , Polímeros/química , Cristalización , Excipientes/química , Espectrometría Raman , Termodinámica , Cinética , Agua/química
5.
Front Immunol ; 15: 1392456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779673

RESUMEN

In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.


Asunto(s)
Proteínas Bacterianas , Animales , Ratones , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/prevención & control , Streptococcus suis/inmunología , Streptococcus suis/genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Femenino , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Humanos , Vacunas Bacterianas/inmunología
6.
Front Mol Neurosci ; 17: 1359294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706874

RESUMEN

Parkinson's disease (PD), ranking as the second most prevalent neurodegenerative disorder globally, presents a pressing need for innovative animal models to deepen our understanding of its pathophysiology and explore potential therapeutic interventions. The development of such animal models plays a pivotal role in unraveling the complexities of PD and investigating promising treatment avenues. In this study, we employed transcriptome sequencing on BmN cells treated with 1 µg/ml rotenone, aiming to elucidate the underlying toxicological mechanisms. The investigation brought to light a significant reduction in mitochondrial membrane potential induced by rotenone, subsequently triggering mitophagy. Notably, the PTEN induced putative kinase 1 (PINK1)/Parkin pathway emerged as a key player in the cascade leading to rotenone-induced mitophagy. Furthermore, our exploration extended to silkworms exposed to 50 µg/ml rotenone, revealing distinctive motor dysfunction as well as inhibition of Tyrosine hydroxylase (TH) gene expression. These observed effects not only contribute valuable insights into the impact and intricate mechanisms of rotenone exposure on mitophagy but also provide robust scientific evidence supporting the utilization of rotenone in establishing a PD model in the silkworm. This comprehensive investigation not only enriches our understanding of the toxicological pathways triggered by rotenone but also highlights the potential of silkworms as a valuable model organism for PD research.

7.
Food Chem ; 453: 139691, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781904

RESUMEN

Yeast extract is increasingly becoming an attractive source for unraveling novel umami peptides that are healthier and more nutritious than traditional seasonings. In the present study, a strategy for screening novel umami peptides was established using mass spectrometry-based peptidomics combined with molecular interaction modeling, emphasizing on smaller peptides than previously reported. Four representative novel umami peptides of FE, YDQ, FQEY, and SPFSQ from yeast extract (Saccharomyces cerevisiae) were identified and validated by sensory evaluation, with thresholds determined as 0.234 ± 0.045, 0.576 ± 0.175, 0.327 ± 0.057 and 0.456 ± 0.070 mmol/L, respectively. Hydrogen and ionic bonds were the main characteristic interactions between the umami peptides and the well-recognized receptor T1R1/T1R3, in which Asp 110, Thr 112, Arg 114, Arg 240, Lys 342, and Glu 264 were the key sites in ligand-receptor recognition. Our study provides accurate sequences of umami peptides and molecular interaction mechanism for the umami effect.


Asunto(s)
Péptidos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Péptidos/química , Humanos , Gusto , Modelos Moleculares , Aromatizantes/química , Aromatizantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Masculino , Proteómica , Femenino , Secuencia de Aminoácidos
8.
Front Immunol ; 14: 1274027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098490

RESUMEN

Background: Emerging infectious diseases pose a significant threat to both human and animal populations. Rapid de novo identification of protective antigens from a clinical isolate and development of an antigen-matched vaccine is a golden strategy to prevent the spread of emerging novel pathogens. Methods: Here, we focused on Actinobacillus pleuropneumoniae, which poses a serious threat to the pig industry, and developed a general workflow by integrating proteosurfaceomics, secretomics, and BacScan technologies for the rapid de novo identification of bacterial protective proteins from a clinical isolate. Results: As a proof of concept, we identified 3 novel protective proteins of A. pleuropneumoniae. Using the protective protein HBS1_14 and toxin proteins, we have developed a promising multivalent subunit vaccine against A. pleuropneumoniae. Discussion: We believe that our strategy can be applied to any bacterial pathogen and has the potential to significantly accelerate the development of antigen-matched vaccines to prevent the spread of an emerging novel bacterial pathogen.


Asunto(s)
Actinobacillus pleuropneumoniae , Pleuroneumonía , Animales , Humanos , Porcinos , Antígenos Bacterianos , Vacunas Bacterianas , Proteínas Bacterianas , Pleuroneumonía/microbiología , Pleuroneumonía/prevención & control
10.
Mol Nutr Food Res ; 67(18): e2200321, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37439463

RESUMEN

SCOPE: Dietary supplementation of docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) can alter the lipidome profiles of adipocytes, thereby counteract obesity. DHA/EPA in the form of phospholipids demonstrates higher bioavailability than triglyceride or ethyl ester (EE), but their effects on the lipidome and metabolic changes during obesity are still unknown. METHODS AND RESULTS: High-fat diet-induced obese mice are treated with different molecular forms of EPA, and EPA supplemented as phosphoethanolamine plasmalogens (PlsEtn) has a superior effect on reducing fat mass accumulation than phosphatidylcholine (PC) or EE. The lipidomics analysis indicates that EPA in form of PlsEtn but not PC or EE significantly decreases total PC and sphingomyelin content in white adipose tissue (WAT). Some specific polyunsaturated fatty acid -containing PCs and ether phospholipids are increased in EPA-PlsEtn-fed mice, which may attribute to the upregulation of unsaturated fatty acid biosynthesis and fatty acid elongation reactions in WAT. In addition, the expression of genes related to fatty acid catabolism is also promoted by EPA-PlsEtn supplementation, which may cause the decreased content of saturated and monounsaturated fatty acid-containing PCs. CONCLUSIONS: EPA-PlsEtn supplementation is demonstrated to remodel lipidome and regulate the fatty acid metabolic process in WAT, indicating it may serve as a new strategy for obesity treatment in the future.


Asunto(s)
Ácido Eicosapentaenoico , Plasmalógenos , Ratones , Animales , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/metabolismo , Dieta Alta en Grasa/efectos adversos , Lipidómica , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Ácidos Docosahexaenoicos/farmacología , Tejido Adiposo Blanco , Fosfatidiletanolaminas/metabolismo , Tejido Adiposo/metabolismo
11.
ISA Trans ; 135: 290-298, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37032566

RESUMEN

In this paper, the bipartite synchronization of signed Lur'e network is studied under intermittent control, where the communication relationship of these adjacent nodes in the network can be either cooperative or competitive. Assuming that the network is structurally balanced, bipartite synchronization can be reached with some conditions and coordinate transform criterion. Then, Based on Lyapunov stability theory, some important norms are established. Ultimately, the simulation results can illustrate validness of theoretical analysis.

12.
J Agric Food Chem ; 71(18): 6908-6919, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098125

RESUMEN

Homeostasis of reactive oxygen species is required to maintain sperm maturation and capacitation. Docosahexaenoic acid (DHA) is accumulated in testicles and spermatozoa and has the ability to manipulate the redox status. The effects of dietary n-3 polyunsaturated fatty acid (n-3 PUFA) deficiency from early life to adulthood on the physiological and functional properties of males under the redox imbalance of testicular tissue deserve attention. The consecutive injection of hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) for 15 days to induce oxidative stress in testicular tissue was used to elucidate the consequences of testicular n-3 PUFA deficiency. The results indicated that reactive oxygen species treatment in adult male mice with DHA deficiency in the testis could reduce spermatogenesis and disrupt sex hormone production, as well as trigger testicular lipid peroxidation and tissue damage. N-3 PUFA deficiency from early life to adulthood resulted in higher susceptibility to testicular dysfunction in the germinal function of supplying germ cells and the endocrine role of secreting hormones through the mechanism of aggravating mitochondria-mediated apoptosis and destruction of blood testicular barrier under oxidative stress, which might provide a basis for humans to reduce susceptibility to chronic disease and maintain reproductive health in adulthood through dietary interventions of n-3 PUFAs.


Asunto(s)
Ácidos Grasos Omega-3 , Humanos , Ratones , Masculino , Animales , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno/farmacología , Semen , Testículo , Ácidos Docosahexaenoicos/farmacología
13.
J Sci Food Agric ; 103(11): 5529-5538, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37069483

RESUMEN

BACKGROUND: Phosphatidylcholine (PC) is considered to be the major dietary source for choline, which is associated with atherosclerosis progress. Thus, phosphatidylglucose (PG) was prepared by enzymatic modification of PC to investigate the effects on atherosclerosis in apolipoprotein E deficient (ApoE-/- ) mice, as well as to investigate its dose-response relationship. RESULTS: The results showed that dietary PG significantly decreased the atherosclerotic lesion area in a dose-dependent manner. Further studies found that intervention with a 0.8 g kg-1 and 2 g kg-1 PG diet for 4 months significantly decreased free cholesterol level and thus reduced total cholesterol levels in serum. The results of cholesterol distribution among lipoproteins showed that dietary PG significantly decreased low-density lipoprotein levels in ApoE-/- mice. In addition, only administration of high-dose PG significantly reduced total cholesterol levels in liver tissues by 31.2%. Furthermore, mice treated with high-dose PG had an expanded bile acid pool and increased the ratio of conjugated bile acids to unconjugated bile acids in the liver, serum and gallbladder by increasing hepatic gene expression of primary and conjugated bile acid synthesis. Additionally, low-dose and high-dose PG significantly increased total fecal sterols by 20.8% and 11.9%, respectively, by increasing sitosterol and ethylcoprostanol levels. CONCLUSION: These results indicate that PG alleviated atherosclerosis in a dose-dependent manner by increasing cholesterol alienation to bile acids and cholesterol efflux. © 2023 Society of Chemical Industry.


Asunto(s)
Aterosclerosis , Ácidos y Sales Biliares , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Ratones Noqueados , Colesterol , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL
14.
Food Funct ; 14(5): 2349-2361, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843452

RESUMEN

Previous studies have found that eicosapentaenoic acid-enriched phospholipids (EPA-PLs) alleviated glucose and lipid metabolism, which was accompanied by an increase of cluster of differentiation 36 (CD36). However, the effects of EPA-PLs on glucose and lipid metabolism in the case of CD36 mutation are unclear. Thus, spontaneously hypertensive rats/NCrl (SHR) were used as a CD36 mutation model to determine the effects of dietary 2% EPA-PLs for 4 weeks on glucose and lipid metabolism. The results showed that the intervention of EPA-PLs significantly alleviated the abnormal increase of serum free fatty acid levels and glycerol levels in SHRs. Moreover, the administration of EPA-PLs decreased the triglyceride levels and cholesterol levels by 31.1% and 37.9%, respectively, in the liver. Dietary EPA-PLs had no effect on epididymal fat weight, but EPA-PLs inhibited adipocyte hypertrophy in SHRs. Further mechanistic research found that EPA-PL pretreatment significantly reduced triacylglycerol catabolism and increased fatty acid ß-oxidation. Additionally, the administration of EPA-PLs decreased the area under the curve of the intraperitoneal glucose tolerance test and fasting serum insulin levels by activating the IRS/PI3K/AKT signaling pathway. Furthermore, EPA-PL pretreatment significantly increased the CD36 gene expression in the liver tissues, adipose tissues and muscle tissues even in the case of CD36 mutation. These results indicated that EPA-PLs alleviate glucose and lipid metabolism in the case of CD36 mutation, which provides a precise nutrition strategy for people with CD36 mutation.


Asunto(s)
Glucosa , Metabolismo de los Lípidos , Ratas , Animales , Glucosa/metabolismo , Ratas Endogámicas SHR , Fosfolípidos/metabolismo , Ácido Eicosapentaenoico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo
15.
J Biosci Bioeng ; 135(2): 160-166, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494249

RESUMEN

The preparation of steady-state phospholipid liposomes requires cholesterol as a stabilizer, but excessive intake of cholesterol may increase the risk of cardiovascular disease. The sulfated sterols extracted from sea cucumber, mainly including sulfated 24-methylene cholesterol and cholesterol sulfate, have been reported to have a variety of physiological activities. Sulfated sterols are similar to cholesterol in structure and have the potential to replace cholesterol to prepare novel stable multifunctional liposomes, allowing the liposomes to act as carriers for the delivery of less bioavailable nutrients while allowing sulfated sterols in the lipid bilayer to exert physiologically active effects. This study aimed to prepare a novel multifunctional nanoliposome stabilized with sulfated sterols from sea cucumber instead of cholesterol by ultrasound-assisted thin-film dispersion method. The results showed that stable and uniformly dispersed nanoliposomes could be formed when the substitution ratio of sea cucumber-derived cholesterol sulfate was 100% and the ratio of lecithin to cholesterol sulfate was 3:1. Fucoxanthin encapsulated liposome with egg yolk lecithin/sea cucumber-derived cholesterol sulfate/fucoxanthin mass ratio of 6:2:3 was successfully prepared, with an average particle size of 214 ± 3 nm, polydispersity index (PDI) value of 0.297 ± 0.006, the zeta potential of -57.2 ± 1.10 mV, and the encapsulation efficiency of 85.5 ± 0.8%. The results of digestion and absorption in vitro and in vivo showed that liposomes could significantly improve the bioavailability of fucoxanthin and prolong its residence time in serum. As an efficient multifunctional carrier, this novel liposome has great potential for applications in functional foods and biomedicine.


Asunto(s)
Fitosteroles , Pepinos de Mar , Animales , Liposomas/química , Lecitinas , Pepinos de Mar/química , Colesterol/química , Esteroles , Tamaño de la Partícula
16.
Mol Nutr Food Res ; 67(8): e2200089, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36177701

RESUMEN

SCOPE: It has been reported that eicosapentaenoic acid (EPA), especially EPA-enriched phospholipids (EPA-PL), significantly ameliorates depression-like behavior in mice, while the corresponding effect of docosahexaenoic acid (DHA) is weak. However, it is still unclear whether the limited effect of DHA on alleviating depression is remedied by dose and chemical structure adjustment to DHA-PL. METHODS AND RESULTS: A mouse model with depression is established by chronic unpredictable mild stress (CUMS) coupled with lipopolysaccharide (LPS) challenge to simulate the infection-triggered immune perturbation during chronic stress, and the effects of dietary 0.2% EPA-PL, 0.2% DHA-PL, 0.6% DHA-PL, and 0.6% DHA-enriched ethyl ester (DHA-EE) are comparatively investigated. The results demonstrate that dietary 0.6% DHA-PL, instead of 0.2% DHA-PL and 0.6% DHA-EE, significantly rescues the depression-like behavior with similar effects to 0.2% EPA-PL. Further studies reveal that dietary DHA-PL regulates immune dysregulation, inhibits neuroinflammation by NLRP3 inflammasome, and further improves monoamine systems and the hypothalamic-pituitary-adrenal (HPA) axis. CONCLUSION: The limited effect of DHA on depression is remedied by chemical structure adjustment to DHA-PL and three-fold dose. The present findings provide a potential novel candidate or targeted dietary patterns to prevent and treat depression.


Asunto(s)
Ácidos Docosahexaenoicos , Fosfolípidos , Ratones , Animales , Fosfolípidos/farmacología , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/química , Dieta , Relación Estructura-Actividad
17.
J Sci Food Agric ; 103(8): 3950-3960, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36377349

RESUMEN

BACKGROUND: Sea cucumber saponins (SCSs) exhibit a unique structure and high bioactivities and might have specialized implications on caffeine metabolic process by altering the activity of N-demethylation enzyme CYP1A2. The present study aimed to clarify the effects of SCS on caffeine metabolism in vivo and in vitro, as well as the synergistic anti-obesity effect of SCS and caffeine on high-fat diet-induced obese mice. RESULTS: Results found that SCS administration significantly postponed the elimination rate of caffeine and its metabolites in vivo, and further study found CYP1A2-mediated caffeine metabolism was remarkably inhibited in a dose-dependent manner in vitro. The synergistic effect of the SCS and caffeine combination could decrease the total weight of white adipose tissue by 52% compared with high-fat diet-treated group. CONCLUSION: SCS could prolong caffeine action time, and the combination of the two substances exhibited joint action on high-fat diet-induced obese mice. These findings might provide a basis for the development of functional foods and potential application using the combination of SCS and caffeine. © 2022 Society of Chemical Industry.


Asunto(s)
Saponinas , Pepinos de Mar , Ratones , Animales , Saponinas/química , Dieta Alta en Grasa , Cafeína , Citocromo P-450 CYP1A2/metabolismo , Pepinos de Mar/química , Pepinos de Mar/metabolismo , Ratones Obesos , Obesidad/prevención & control
18.
Food Chem ; 405(Pt A): 134872, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36371831

RESUMEN

As an oxycarotenoid with strong antioxidant properties, astaxanthin can considerably boost pigmentation and improve the nutritional value of eggs. The purpose of this study was to elucidate the comparative effects of different chemical structures of astaxanthin including free astaxanthin, monoester-enriched astaxanthin and diester-enriched astaxanthin on the nutritional enhancement of eggs within 20 days. The results showed that supplementation of free astaxanthin to laying hens was more effective in accumulating astaxanthin in egg yolks than supplementation with esterified astaxanthin. The retention rate of free astaxanthin was approximately 12.0 % at the plateau phase in egg yolk, while that of monoester-enriched and diester-enriched astaxanthin were 4.0 % and 2.5 %, respectively. Free astaxanthin possessed a high retention rate and pigmentation effect compared with esterified astaxanthin, which might provide a basis for astaxanthin enhancement in eggs and potential application in nutritional functional foods.


Asunto(s)
Pollos , Yema de Huevo , Animales , Femenino , Yema de Huevo/química , Alimentación Animal/análisis , Dieta , Huevos
19.
Front Med (Lausanne) ; 10: 1335512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249960

RESUMEN

Background: Single-cell RNA sequencing (scRNA-Seq) provides new perspectives and ideas to investigate the interactions between different cell types and organisms. By integrating scRNA-seq with new computational frameworks or specific technologies, better Alzheimer's disease (AD) treatments may be developed. Methods: The single-cell sequencing dataset GSE158234 was obtained from the GEO database. Preprocessing, quality control, dimensionality-reducing clustering, and annotation to identify cell types were performed on it. RNA-seq profiling dataset GSE238013 was used to determine the components of specific cell subpopulations in diverse samples. A set of genes included in the OMIM, Genecards, CTD, and DisGeNET databases were selected as highly plausible AD-related genes. Then, ROC curves were created to predict the diagnostic value using the significantly expressed genes in the KO group as hub genes. The genes mentioned above were mapped to the Coremine Medical database to forecast prospective therapeutic Chinese medicines, and a "Chinese medicine-ingredient-target" network was constructed to screen for potential therapeutic targets. The last step was to undertake Mendelian randomization research to determine the causal link between the critical gene IL1B and AD in the genome-wide association study. Results: Using the scRNA-seq dataset, five unique cell clusters were discovered. These clusters were further subdivided into four distinct cell types using marker genes. The KO group showed a more substantial differential subgroup of macrophages than the WT group. By using the available datasets and PPI network analysis, 54 common genes were discovered. Four clusters were identified using the MCODE approach, and correlation analysis showed that seven genes in those four clusters had a significantly negative correlation with macrophages. Six genes in four sets had a significantly positive correlation. Five genes had different levels of expression in the WT and KO groups. The String database was used to identify the regulatory relationships between the four genes (IL10, CX3CR1, IL1B, and IL6) that were finally selected as AD hub genes. Screening identified potential traditional Chinese medicine to intervene in the transformation process of AD, including Radix Salviae, ginseng, Ganoderma, licorice, Coptidis Rhizoma, and Scutellariae Radix, in addition to promising therapeutic targets, such as PTGS1, PTGS2, and RXRA. Finally, it was shown that IL1B directly correlated with immune cell infiltration in AD. In inverse variance weighting, we found that IL1B was associated with a higher risk of AD, with an OR of 1.003 (95% CI = 1.001-1.006, p = 0.038). Conclusion: Our research combined network pharmacology and the scRNA-seq computational framework to uncover pertinent hub genes and prospective traditional Chinese medicine potential therapeutic targets for AD. These discoveries may aid in understanding the molecular processes behind AD genes and the development of novel medications to treat the condition.

20.
Mar Drugs ; 20(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36286453

RESUMEN

Dietary supplementation of sea cucumber saponins and calorie restriction have been proved to be effective in alleviating obesity, but the differences of anti-obesity effects between sea cucumber saponins and energy restriction during weight loss and weight regain are still unknown. In the present study, high-fat-induced obesity mice were randomly divided into three groups, including a high-fat diet group (HF), an energy restriction by 40% group (HF-L), and a sea cucumber saponins group (HF-S), to compare the effects of dietary sea cucumber saponins and energy restriction on the weight, glucose, and lipid metabolism of obese mice during weight loss and weight regain. The results showed that dietary 0.06% sea cucumber saponins and limiting energy intake by 40% had the same weight loss effect. Interestingly, sea cucumber saponins could alleviate impaired glucose tolerance and insulin resistance caused by obesity. In addition, the inhibited SREBP-1c mediated lipogenesis might lead to the alleviation of weight regain after resuming the high-fat diet even when sea cucumber saponins were no longer supplemented. In contrast, limiting energy intake tended to promote lipid synthesis in the liver and white adipose tissue after restoring a high-fat diet, and inflammation was also induced. The findings indicated that sea cucumber saponins could replace calorie restriction to prevent obesity and might be used as a functional food or drug to resist obesity and related diseases caused by obesity.


Asunto(s)
Saponinas , Pepinos de Mar , Ratones , Animales , Pepinos de Mar/metabolismo , Saponinas/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/prevención & control , Pérdida de Peso , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Glucosa/metabolismo , Lípidos , Aumento de Peso , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...