Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virology ; 592: 110009, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38330852

RESUMEN

Swine influenza viruses pose ongoing threat to pork industry throughout the world. In 2023, fattening pigs from a swine farm in Inner Mongolia of China experienced influenza-like symptoms. Co-infection of influenza A virus with Pasteurella multocida was diagnosed in lung tissues of diseased pigs and a genotype 4 (G4) Eurasian avian-like (EA) H1N1 virus was isolated, which was named as A/swine/Neimenggu/0326/2023. We demonstrated the virus preferentially bound human-like SAα2,6Gal receptor. It was noteworthy that the virus possessed multiple genetic markers for mammalian adaptation in the internal genes. Animal studies showed that compared with genotype 1 (G1) EA H1N1 virus and early prevalent G4 EA H1N1 virus, A/swine/Neimenggu/0326/2023 virus exhibited increased virus shedding, enhanced replication in lungs, and caused more severe lung lesions in pigs. These findings indicate that the G4 EA H1N1 virus poses increased threat to pork industry, controlling the prevailing viruses in pigs should be promptly implemented.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Neumonía , Enfermedades de los Porcinos , Porcinos , Humanos , Animales , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Genotipo , Aves , China/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/genética , Mamíferos
2.
Cell ; 186(19): 4074-4084.e11, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37669665

RESUMEN

H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Gripe Humana , Animales , Humanos , Ratones , Pollos , Hurones , Subtipo H3N2 del Virus de la Influenza A , Aerosoles y Gotitas Respiratorias
3.
Lancet Microbe ; 3(11): e824-e834, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115379

RESUMEN

BACKGROUND: The H3N8 avian influenza virus (AIV) has been circulating in wild birds, with occasional interspecies transmission to mammals. The first human infection of H3N8 subtype occurred in Henan Province, China, in April, 2022. We aimed to investigate clinical, epidemiological, and virological data related to a second case identified soon afterwards in Hunan Province, China. METHODS: We analysed clinical, epidemiological, and virological data for a 5-year-old boy diagnosed with H3N8 AIV infection in May, 2022, during influenza-like illness surveillance in Changsha City, Hunan Province, China. H3N8 virus strains from chicken flocks from January, 2021, to April, 2022, were retrospectively investigated in China. The genomes of the viruses were sequenced for phylogenetic analysis of all the eight gene segments. We evaluated the receptor-binding properties of the H3N8 viruses by using a solid-phase binding assay. We used sequence alignment and homology-modelling methods to study the effect of specific mutations on the human receptor-binding properties. We also conducted serological surveillance to detect the H3N8 infections among poultry workers in the two provinces with H3N8 cases. FINDINGS: The clinical symptoms of the patient were mild, including fever, sore throat, chills, and a runny nose. The patient's fever subsided on the same day of hospitalisation, and these symptoms disappeared 7 days later, presenting mild influenza symptoms, with no pneumonia. An H3N8 virus was isolated from the patient's throat swab specimen. The novel H3N8 virus causing human infection was first detected in a chicken farm in Guangdong Province in December, 2021, and subsequently emerged in several provinces. Sequence analyses revealed the novel H3N8 AIVs originated from multiple reassortment events. The haemagglutinin gene could have originated from H3Ny AIVs of duck origin. The neuraminidase gene belongs to North American lineage, and might have originated in Alaska (USA) and been transferred by migratory birds along the east Asian flyway. The six internal genes had originated from G57 genotype H9N2 AIVs that were endemic in chicken flocks. Reassortment events might have occurred in domestic ducks or chickens in the Pearl River Delta area in southern China. The novel H3N8 viruses possess the ability to bind to both avian-type and human-type sialic acid receptors, which pose a threat to human health. No poultry worker in our study was positive for antibodies against the H3N8 virus. INTERPRETATION: The novel H3N8 virus that caused human infection had originated from chickens, a typical spillover. The virus is a triple reassortment strain with the Eurasian avian H3 gene, North American avian N8 gene, and dynamic internal genes of the H9N2 viruses. The virus already possesses binding ability to human-type receptors, though the risk of the H3N8 virus infection in humans was low, and the cases are rare and sporadic at present. Considering the pandemic potential, comprehensive surveillance of the H3N8 virus in poultry flocks and the environment is imperative, and poultry-to-human transmission should be closely monitored. FUNDING: National Natural Science Foundation of China, National Key Research and Development Program of China, Strategic Priority Research Program of the Chinese Academy of Sciences, Hunan Provincial Innovative Construction Special Fund: Emergency response to COVID-19 outbreak, Scientific Research Fund of Hunan Provincial Health Department, and the Hunan Provincial Health Commission Foundation.


Asunto(s)
COVID-19 , Subtipo H3N8 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Preescolar , Gripe Aviar/epidemiología , Subtipo H3N8 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Filogenia , Estudios Retrospectivos , Pollos , Aves de Corral , Patos , Mamíferos
4.
PLoS Pathog ; 17(12): e1010098, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860863

RESUMEN

H5N6 highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4 not only exhibits unprecedented intercontinental spread in poultry, but can also cause serious infection in humans, posing a public health threat. Phylogenetic analyses show that 40% (8/20) of H5N6 viruses that infected humans carried H9N2 virus-derived internal genes. However, the precise contribution of H9N2 virus-derived internal genes to H5N6 virus infection in humans is unclear. Here, we report on the functional contribution of the H9N2 virus-derived matrix protein 1 (M1) to enhanced H5N6 virus replication capacity in mammalian cells. Unlike H5N1 virus-derived M1 protein, H9N2 virus-derived M1 protein showed high binding affinity for H5N6 hemagglutinin (HA) protein and increased viral progeny particle release in different mammalian cell lines. Human host factor, G protein subunit beta 1 (GNB1), exhibited strong binding to H9N2 virus-derived M1 protein to facilitate M1 transport to budding sites at the cell membrane. GNB1 knockdown inhibited the interaction between H9N2 virus-derived M1 and HA protein, and reduced influenza virus-like particles (VLPs) release. Our findings indicate that H9N2 virus-derived M1 protein promotes avian H5N6 influenza virus release from mammalian, in particular human cells, which could be a major viral factor for H5N6 virus cross-species infection.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana/virología , Virus Reordenados/genética , Proteínas de la Matriz Viral/metabolismo , Zoonosis Virales/virología , Animales , Pollos/virología , Humanos , Virus de la Influenza A/genética , Liberación del Virus
5.
Vet Microbiol ; 262: 109238, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34560407

RESUMEN

H9N2 subtype avian influenza virus (AIV) is an ongoing threat causing substantial loss to the poultry industry and thus necessitating the development of safe and effective vaccines against AIV. Given that inactivated vaccines are less effective in activating the mucosal immune system, we aimed to generate a vaccine that can actively engage the mucosal immunity which is the front line of the immune system. We generated a group of flagellin-based hemagglutinin globular head (HA1) fusion proteins and characterized their immunogenicity and efficacy. We found that Salmonella typhimurium flagellin (fliC) lacking the hypervariable domain (called herein as HA1-ΔfliC) was recognized by TLR5 and induced a moderate innate immune response compared to N-terminus of fliC (HA1-fliC) and C-terminus of fliC (fliC-HA1). The HA1-ΔfliC protein had increased adherence to the nasal cavity and trachea than HA1-fliC and fliC-HA1 and significantly increased the HA-specific sIgA titers. Our in vivo results revealed that chickens treated with HA1-ΔfliC had a significantly reduced level of viral loads in the cloaca and throat compared with chickens treated with inactivated vaccine. Overall, these results revealed that HA1-ΔfliC can protect chickens against H9N2 AIV by eliciting the efficient mucosal immune responses.


Asunto(s)
Células Epiteliales , Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Proteínas Recombinantes de Fusión , Animales , Anticuerpos Antivirales/inmunología , Pollos , Células Epiteliales/inmunología , Células Epiteliales/virología , Flagelina/genética , Inmunidad , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/virología , Proteínas Recombinantes de Fusión/inmunología
6.
Virology ; 561: 28-35, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139638

RESUMEN

Reassortant Eurasian avian-like (EA) H1N1 virus, possessing 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes, namely G4 genotype, has replaced the G1 genotype EA H1N1 virus (all the genes were of EA origin) and become predominant in swine populations in China. Understanding the pathogenicity of G4 viruses in pigs is of great importance for disease control. Here, we conducted comprehensive analyses of replication and pathogenicity of G4 and G1 EA H1N1 viruses in pigs. G4 virus exhibited enhanced replication, increased duration of virus shedding, and caused more severe respiratory lesions in pigs compared with G1 virus. G4 virus, with viral ribonucleoprotein (vRNP) complex genes of pdm/09 origin, exhibited higher levels of nuclear accumulation and higher polymerase activity, which is essential for improved replication of G4 virus. These findings indicate that G4 virus poses a great threat to both swine industry and public health, and control measures should be urgently implemented.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/patogenicidad , Enfermedades de los Porcinos/virología , Animales , Núcleo Celular/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Pulmón/patología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Reordenados/genética , Virus Reordenados/fisiología , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Porcinos , Enfermedades de los Porcinos/patología , Tráquea/patología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia , Replicación Viral , Esparcimiento de Virus
7.
Emerg Microbes Infect ; 10(1): 472-480, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33657971

RESUMEN

Pandemic influenza, typically caused by the reassortment of human and avian influenza viruses, can result in severe or fatal infections in humans. Timely identification of potential pandemic viruses must be a priority in influenza virus surveillance. However, the range of host species responsible for the generation of novel pandemic influenza viruses remains unclear. In this study, we conducted serological surveys for avian and human influenza virus infections in farmed mink and determined the susceptibility of mink to prevailing avian and human virus subtypes. The results showed that farmed mink were commonly infected with human (H3N2 and H1N1/pdm) and avian (H7N9, H5N6, and H9N2) influenza A viruses. Correlational analysis indicated that transmission of human influenza viruses occurred from humans to mink, and that feed source was a probable route of avian influenza virus transmission to farmed mink. Animal experiments showed that mink were susceptible and permissive to circulating avian and human influenza viruses, and that human influenza viruses (H3N2 and H1N1/pdm), but not avian viruses, were capable of aerosol transmission among mink. These results indicate that farmed mink could be highly permissive "mixing vessels" for the reassortment of circulating human and avian influenza viruses. Therefore, to reduce the risk of emergence of novel pandemic viruses, feeding mink with raw poultry by-products should not be permitted, and epidemiological surveillance of influenza viruses in mink farms should be urgently implemented.


Asunto(s)
Virus de la Influenza A/patogenicidad , Visón/virología , Infecciones por Orthomyxoviridae/transmisión , Animales , Modelos Animales de Enfermedad , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/inmunología , Visón/inmunología , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/inmunología , Virus Reordenados/inmunología , Virus Reordenados/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...